Диссертация (1091621), страница 19
Текст из файла (страница 19)
– 2012. – V.28. – №.2. – P. 138190.Christova N., Wray V., Kaloyanov K., Konstantinov S., Stoineva I. Production,Structural Elucidation, and In Vitro Antitumor Activity of Trehalose LipidBiosurfactant from Nocardia farcinica Strain // J Microbiol Biotechnol. – 2015. –V.25. – №.4. – P 439-47.Christova N., Stoineva I. Trehalose Biosurfactants in Biosurfactants: Research Trendsand Applications / Mulligan C.N., Sharma S.K., Mudhoo A. (ed) – Taylor and Fransis.New York. – 2014. – P.197-212.Hunter R.L., Venkataprasad N., Olsen M.R. The role of trehalose dimycolate (cordfactor) on morphology of virulent M.
tuberculosis in vitro // Tuberculosis (Edinb). –2006. – V.86. – №.5. – P. 349-56.Yano I., Kaneda K., Kato Y., Sumi Y., Kurano S., Sugimoto N., Sawai H. Isolation ofmycolic acid-containing glycolipids in Nocardia rubra and their granuloma formingactivity in mice // Journal of pharmacobio-dynamics. – 1987. – V.10.
– P.113-23.Natsuhara Y., Kaneda K., Kato Y., Yano I. Parallel antitumor, granuloma-forming andtumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubrathat differ in carbohydrate moiety: structure-activity relationships // Cancer ImmunolImmunother. – 1990. – V.31. – №.2. – P. 99-106.Kitamoto D., Isoda H., Nakahara T. Functions and potential applications of glycolipidbiosurfactants--from energy-saving materials to gene delivery carriers // J BiosciBioeng. – 2002.
– V.94. – №.3. – P. 187-201.Aranda F.J., Teruel J.A., Espuny M.J., Marques A., Manresa A., Palacios-Lidon E.,Ortiz A. Domain formation by a Rhodococcus sp. biosurfactant trehalose lipidincorporated into phosphatidylcholine membranes // Biochim Biophys Acta. – 2007. –V. 1768. – №10. – P.
2596-604.Ortiz A., Teruel J.A., Espuny M.J., Marques A., Manresa A., Arandda F.J. Interactionsof a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolaminemembranes // Biochim Biophys Acta. – 2008. – V.1778. – №.12. – P. 2806-13.12078.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.Ortiz A., Espuny M.J., Marques A., Manresa A., Aranda F.J.
Interactions of a bacterialbiosurfactant trehalose lipid with phosphatidylserine membranes // Chem Phys Lipids.– 2009. – V.158. – №.1. – P. 46-53.Bouchez-Naitali M., R.H., Marchal R., Leveau J.Y., Vandecasteele J.P. Diversity ofbacterial strains degrading hexadecane in relation to the mode of substrate uptake // JAppl Microbiol. – 1999.
– V.86. – №.3. – P. 421-8.Bouchez-Naitali M., Bardin V., Vandecasteele J.P. Evidence for interfacial uptake inhexadecane degradation by Rhodococcus equi: the importance of cell flocculation //Microbiology. – 2001. – V.147. – №.9. – P. 2537-43.Bouchez-Naïtali M., Vandecasteele J.P. Biosurfactants, an help in the biodegradationof hexadecane? The case of Rhodococcus and Pseudomonas strains // World Journalof Microbiology and Biotechnology. – 2008. – V.24.
– №.9. – P. 1901-1907.Lang S. and Philp J.C. Surface-active lipids in Rhodococci // Antonie VanLeeuwenhoek. – 1998. – V.74. – №.(1-3). – P. 59-70.Tuleva B., Cohen R., Antonovka D., Todorov T., Stoineva I. Isolation andcharacterization of trehalose tetraester biosurfactants from a soil strain Micrococcusluteus BN56 // Process Biochemistry. – 2009. – V.44. – №.2. – P. 135-141.Franzetti A., Caredda P., La Colla P., Tamburini E.
Surface-active compounds andtheir role in the access to hydrocarbons in Gordonia strains // FEMS Microbiol Ecol. –2008. – V.63. – №.2. – P. 238-48.Коронелли Т.В. Принципы и методы интенсификации биологическогоразрушения углеводородов в окружающей среде // Прикл. биохимия имикробиол. – 1996. – T.
32. – N.6. – P. 7.Li, Y., Wang H. and Hua F. Uptake Modes of Fluoranthene by Strain RhodococcusSp. Bap-1// Biotechnology & Biotechnological Equipment. – 2014. – V.27. – №.6. –P. 4256-4262.Li J-L., Chang B.-H. Surfactant-mediated Biodegradation of Polycyclic AromaticHydrocarbons // Materials. – 2009. – V.2. – №.1. – P. 76-94.Рубцова Е.В., Куюкина М.С., Ившина И.Б. Влияние условия культивирования наадгезию родококков в отношенении к н-гексадекану // Прикладная биохимия имикробиология. – 2012. – T.48. – №.5.
– P. 9.Гоголева О.А., Немцева Н.В. Углеводородокисляющие микроорганизмыприродных экосистем // Бюллетень Оренбургского научного центра УрО РАН. –2012. – T2. – P. 7.Коронелли Т.В., Калюжная Т.В. Изменение ультраструктуры клетоксапротрофных микобактерий под влиянием изониазида // Микробиология. –1983. – T.2. – P. 5.Hua, F. and Wang H.Q. Uptake and trans-membrane transport of petroleumhydrocarbons by microorganisms // Biotechnol Biotechnol Equip. – 2014.
– V.28. –№.2. – P. 165-175.Коронелли Т.В., Поршнева О.В. Липиды R- и S-вариантов Rhodococcuserythropolis // Микробиология. – 1995. – T.6. – P. 4.Nikaido H. Multidrug efflux pumps of gram-negative bacteria // J Bacteriol. – 1996. –V. 178. – №.20. – P. 5853-9.Дмитриев В.В., Рогачевский В. В., Звонарев А.
Н. Экзополимерымикроорганизмов в утилизации гидрофобных субстратов // Известия Тульскогогосударственного университета. Естественные науки. – 2012. – T.2. – P. 3.Липиды микобактерий и родственных микроорганизмов. [Коронелли Т.В.]. Издво Московского университета. – 1984. – 157c.12196.97.98.99.100.101.102.103.104.105.106.107.108.109.110.111.112.Kim I.S., Foght J.M. Gray M.R.
Selective transport and accumulation of alkanes byRhodococcus erythropolis S+14He // Biotechnol Bioeng. – 2002. – V.80. – №.6. – P.650-9.Bicca F.C., Ayub M.A. Production of biosurfactant by hydrocarbon degradingRhodococcus ruber and Rhodococcus erythropolis // Revista de Microbiologia. –1999.
– V.30. – P. 6.Ivshina I.B., Kuyukina M.S., Philp J.C., Christofi N. Oil desorption from mineral andorganic materials using biosurfactant complexes produced by Rhodococcus species //World J Microbiol Biotechnol. – 1998. – V.14. – №.5. – P. 711-717.Griffin W.C. Classification of Surface-Active Agents by “HLB” // The Journal of theSociety of Cosmetic Chemists. – 1949.
– V.1. – P. 311-326.Kuyukina M.S., Ivshina I.B., Gavrin A.Y., Podorozhko E.A., Lozinsky V.I., JeffreeC.E., Philp J.C. Immobilization of hydrocarbon-oxidizing bacteria in poly(vinylalcohol) cryogels hydrophobized using a biosurfactant // J Microbiol Methods. –2006. – V.65. – №.3. – P. 596-603.Kim J.S., Lang S., Wagner F., Lunsdorf H., Wray V. Microbial glycolipid productionunder nitrogen limitation and resting cell conditions // J Biotechnol. – 1990.
– V.13. –N4. – P. 257-66.Pal M.P., Desai K.M., Joshi R.M., Nene S.N., Kulkarni B.D. Media optimization forbiosurfactant production by Rhodococcus erythropolis MTCC 2794: artificialintelligence versus a statistical approach // J Ind Microbiol Biotechnol. – 2009. – V.36.– N.5. – P. 747-56.Pirog T.P., Voloshina I.N., Karpenko E.V.
Production of surfactants by Rhodococcuserythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates // PriklBiokhim Mikrobiol. – 2004. – V.40. – №.5. – P. 544-50.Kuyukina M.S., Ivshina I.B., Philp J.C., Christofi N., Dunbar S.A., Ritchkova M.I.,Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction //J Microbiol Methods.
– 2001. – V.46. – №.2. – P. 149-56.Pacheco G.J., Gomes Ede B., Junior N.P. Biosurfactant production by Rhodococcuserythropolis and its application to oil removal // Braz J Microbiol. – 2010. – V.41. –№.3. – P. 685-93.Haddadin Y., Abu Reesh I. Kinetics of hydrocarbon extraction from oil shale usingbiosurfactant producing bacteria // Energy Conversion and Management. – 2009. –V.50.
– №.4. – P. 983-990.De Carvalho C.C. Adaptation of Rhodococcus erythropolis cells for growth andbioremediation under extreme conditions // Res Microbiol. – 2012. – V.163. – №.2. –P. 11.Suutari M. and Laakso S. Microbial fatty acids and thermal adaptation // Crit RevMicrobiol. – 1994.
– V.20. – №.4. – P. 285-328.Nishiuchi Y., Baba T., Yano I. Mycolic acids from Rhodococcus, Gordonia, andDietzia // J Microbiol Methods. – 2000. – V.40. – №.1. – P. 1-9.Whyte L.G., Pietrantonio F., Bourbonniere L., Koval S.F., Lawrence J.R., Inniss W.E.,Greer C.W. Physiological adaptations involved in alkane assimilation at a lowtemperature by Rhodococcus sp. strain Q15 // Appl Environ Microbiol. – 1999. –V.65. – №.7. – P. 2961-8.de Carvalho C.C.
and da Fonseca M.M. Degradation of hydrocarbons and alcohols atdifferent temperatures and salinities by Rhodococcus erythropolis DCL14 // FEMSMicrobiol Ecol. – 2005. – V.51. – №.3. – P. 389-99.Alvarez H.M., Mayer F., Fabritius D., Steinbüchel A. Formation of intracytoplasmiclipid inclusions by Rhodococcus opacus strain PD630 // Archives of Microbiology. –1996. – V.165. – №.6. – P. 377-386.122113.114.115.116.117.118.119.120.121.122.123.124.125.126.127.128.129.Alvarez H.M., Silva R.A., Cesari A.C., Zamit A.L., Peressutti S.R., Reichelt R., KellerU. Physiological and morphological responses of the soil bacterium Rhodococcusopacus strain PD630 to water stress // FEMS Microbiol Ecol.
– 2004. – V .50. – №.2.– P. 75-86.Waltermann M. and Steinbuchel A. Neutral lipid bodies in prokaryotes: recent insightsinto structure, formation, and relationship to eukaryotic lipid depots // J Bacteriol. –2005. – V. 187. – №.11. – P. 3607-19.Packter N.M. and Olukoshi E.R. Ultrastructural studies of neutral lipid localisation inStreptomyces // Arch Microbiol.
– 1995. – V.164. – №.6. – P. 420-7.Waltermann M., Hinz A., Robenek H., Troyer D., Reichelt R., Malkus U., Galla H.J.,Kalscheuer R., Stoveken T., von Landenberg P., Steinbuchel A. Mechanism of lipidbody formation in prokaryotes: how bacteria fatten up // Mol Microbiol. – 2005. –V.55. – №.3. – P. 750-63.Alvarez H.M., Kalscheuer R. and Steinbuchel A. Accumulation and mobilization ofstorage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126// Appl Microbiol Biotechnol.
– 2000. – V.54. – №.2. – P. 218-23.Alvarez H.M. and Steinbüchel A. Physiology, Biochemistry, and Molecular Biologyof Triacylglycerol Accumulation by Rhodococcus in Biology of Rhodococcus AlvarezH.M.(ed.). – Springer Berlin Heidelberg: Berlin. – 2010. – P. 263-290.McDonald R.
and Knox OG. Cold region bioremediation of hydrocarboncontaminated soils: do we know enough? // Environ Sci Technol. – 2014. – V.48. –№.17. – P. 9980-1.Li C., Zhou Z.X., Jia X.Q., Chen Y., Liu J.,Wen J.P. Biodegradation of Crude Oil by aNewly Isolated Strain Rhodococcus sp. JZX-01 // Appl Biochem Biotechnol. – 2013.– V.171. – №.7. – P. 1715-1725.Margesin R., Moertelmaier C., and Mair J. Low-temperature biodegradation ofpetroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by fouractinobacterial strains // Int Biodeterior Biodegradation. – 2013. – V.84. – P.