Главная » Просмотр файлов » Заключение организации

Заключение организации (1091503)

Файл №1091503 Заключение организации (Математическое моделирование внешних акустических полей методом граничных сингулярных интегральных уравнений)Заключение организации (1091503)2018-01-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Проректор по научной работе, доктор технических наук, Соловьев Игорь Владимирович « ~» 0~ 2015 г. ЗАКЛЮЧВНИЕ Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет информационных технологий, радиотехники и электроники" (МИРЭА). Диссертация «Математическое моделирование внешних акустических полей методом граничных сингулярных интегральных уравнений» выполнена на кафедре Прикладной математики МИРЭА. В период подготовки аспирант Даева Софья 1 еоргиевна училась в аспирантуре МИРЭА.

В 2014г. окончила аспирантуру МИРЭА по специальности 05.13.18 «Математическое моделирование, численные методы и комплексы программ», В 2011г. окончила. МИРЭА по специальности «Прикладная математика». Удостоверение о сдаче кандидатских экзаменов было выдано в 2015г. МИР ЭА. Научный руководитель - Сетуха Алексей Викторович, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова», Научно-исследовательский вычислительный центр, ведущий научный сотрудник. По итогам обсуждения принято следующее заключение: Оценка выполненной соискателем работы. В диссертации решена актуальная научная задача построения численного метода для решения внешних задач акустики, основанного на применении граничных сингулярных интегральных уравнений.

Развитый подход к аналитическому вычислению гиперсингулярных частей интегрального уравнения применен к классической краевой задаче Неймана для уравнения Гельмгольца, к задачам о дифракции акустических волн на тонких экранах, телесных объектах и их комбинациях. Диссертация представляет собой самостоятельно выполненную автором научно-квалификационную работу, в которой им были получены следующие результаты, выносимые на защиту: 1. разработка нового варианта численного метода решения краевой задачи Неймана для уравнения Гельмгольца для задач акустики методом гиперсингулярных интегральных уравнений„ 2.

разработка вычислительной математической модели для задач дифракции скалярных волн, основанная на предложенном численном методе, ее верификация; 3. теоретическая оценка точности метода для частного случая задачи на плоском экране„основанная на математическом доказательстве сходимости численной схемы решения граничного интегрального уравнения на сетке; 4. осуществление программной реализации численного метода в виде комплекса программ для решения задач дифракци и скалярных волн разработанным методом, Достоверность полученных результатов подтверждается использованием строгого математического аппарата при сведении краевых задач к интегральным уравнениям и их дискретизации, математическим доказательством сходимости численной схемы решения граничного интегрального уравнения на сетке в частном случае задачи дифракции волны на плоском экране, а также сравнением получаемых на модельных примерах численных результатов с известными аналитическими, численными и экспериментальными данными, Научная новизна работы состоит в том, что разработан новый вариант численного метода моделирования задач дифракции акустических волн, основанный на выделении в явном виде особенности в ядре граничного интегрального уравнения с гиперсингулярным интегралом.

Также новым результатом является доказательство сходимости численного метода для задачи дифракции на плоском экране. Научная и практическая значимость работы состоит в том, что разработанный подход и основанные на нем численные алгоритмы могут быть применены во внешних задачах дифракции акустических волн на объектах сложной формы. Такие задачи возникают, в частности, при оценке уровня шума в городской застройке, в гидролокации, акустической локации.

Соответствие диссертации специальности. Основные результаты, выносимые на защиту содержат новые результаты в областях исследований соответствующих п. 1. «Разработка новых математических методов моделирования объектов и явлений»; п. 3. «Разработка, обоснование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий»; и. 4. «Реализация эффективных численных методов и алгоритмов в виде комплексов проблемноориентированных программ для проведения вычислительного эксперимента» паспорта специальности 05.13.18 — «Математическое моделирование, численные методы и комплексы программ».

При этом построен новый вариант математического метода моделирования дифракции акустических волн, основанный на сведении задач акустики к граничным гиперсингулярным интегральным уравнениям на основе современного математического аппарата, для решения указанных интегральных уравнений разработана численная схема, для частного случая получено математическое обоснование этой численной схемы, что позволяет отнести диссертацию к отрасли "физико-математические науки". Полнота изложении материалов диссертации в опубликованных работах. Основные резульгжы диссертации опубликованы в 7 научных работах, из которых 3 работы опубликованы в журналах из перечня ВАК [1-31, 1 статья в сборнике тру- дов конференции, индексируемая базами данных Ясорцз и %еЬ о1'Ыепсе 141: 1.

Лебедева СХ. О решении задач дифракции волн методом интегральных уравнений. // Антенны, №2, М.: Радиотехника, 2013г., с.3-6. 2. Лебедева С,Г., Сетуха А.В. О численном решении полного двумерного гиперсингулярного интегрального уравнения методом дискретных особенностей. // Дифференциальные уравнения, том 49, №2, М.: МАИК «Наука/1п1егрепойсаяз 2013г., с.223-233. 3. Даева СХ., Сетуха А.В. О численном решении краевой задачи Неймана для уравнения Гельмгольца методом гиперсингулярных интегральных уравнений.

Вычислительные методы и программирование. Т.16. 2015г., с,421-435, 4. Оае~ а Б.О., БеШИза АХ. Мппег1са1 Япш1абоп оГ Ясапег1пц о1 Асопзт1с Жачев Ьу 1пе1азнс Войез 1/з1пд Нурегз1пуя1аг Воипйагу 1п1епга1 Ес1пабоп // А1Р СопГегепсе Ргосеейпу, к 1648, р, 39004-1 - 390004-4, 2015. Все положения выносимые на защиту представлены в статьях опубликованных в журналах из перечня ВАК 1статьи 11-31). Личный вклад Даевой С.Г. в представленных публикациях„написанных совместно, состоял в следующем: В публикации 121 Сетухой А.В.

осуществлена постановка задачи, записана и доказана теорема о разрешимости. Даевой С.Г. доказана сходимость численной схемы. Вклад Даевой С.Г. -50',4. В публикациях 13-41 Сетухой А.В. сформулированы идеи сведения задачи к граничным интегральным уравнениям и построения численной схемы. Даевой С.Г. реализовано выделение явной особенности в интегральном уравнении, построение вычислительного метода решения задачи на основе дискретизации указанных уравнений, осуществлена програььчная реализация численного метода и проведены тестовые расчеты. Вклад Даевой С.Г.

-50'.4. Диссертация соответствует требованиям, предъявляемым к диссертациям на соискание ученой степени кандидата наук, включая раздел 2 «Положения о порядке присуждения ученых степеней», в частности, п,9 — является научно-квалификационной работой, в которой содержатся разработанные методы численного решения интегро-дифференциальных уравнений, имеющие существенное значение для развития методов вычислительной математики, а также для решения важных практических задач математического моделирования.

Диссертация «Математическое моделирование внешних акустических полей методом граничных сингулярных интегральных уравнений» Даевой Софьи Георгиевны рекомендуется к защите на соискание ученой степени кандидата физико-математических наук по специальности 05.13.18 «Математическое моделирование, численные методы и комплексы программ». Заключение принято на заседании кафедры Прикладной математики Института информационных технологий Московского государственного университета информационных технологий, радиотехники и электроники. Присутствовало на заседании 10 чел.

Результаты голосования: «за» - 10 чел., «против» - 0 чел., «воздержалось» - 0 чел., протокол № 114 от «24» июня 2015 г. / ~' ~~.".,~~ -" Самохин Александр Борисович, „.к. э ) ~'Г.'з ,< 1~- доктор физико-математических наук, заведующий кафедрой Прикладной математики Института информационных технологий ~(э,':;)::.:.';н Оу, л '-.,4'.":., ~'Г ф,У~;;.;;,.-,- !''.' ' ~' '-: ".: ~3.": Р Я 10: 1 ,Ф:.: '";::", '.':.', ~";':.

"%ч" 'ь'/~': управлений кндоов 1 ,у., ': -,': ',.. ь "":,' ~':,::,;ъ Ь< ь,ь, Чяряьял93я .

Характеристики

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее