Диссертация (1090573), страница 17
Текст из файла (страница 17)
Brooks, I.M. Reaney, I.M. Klissurska, Y. Huang, L.A. Bursill.Orientation of Rapidly Thermally Annealed Lead Zirconate Titanate ThinFilms on (111) Pt Substrates. Journal of Materials Research. 1994. V.9.I.10. P.2540-2553.11563.Y. Liu, P.P. Phule. Nucleation- or growth-controlled orientationdevelopment in chemically derived ferroelectric lead zirconate titanate(Pb(ZrxTi1-x)O3, x = 0,4) thin films // Journal of American CeramicSociety. 1996. V.79. P.495-498.64.К.А. Воротилов, О.М.
Жигалина, В.А. Васильев, С.А. Сигов.Особенности формирования кристаллической структуры цирконататитаната свинца в системах Si−SiO2−Ti(TiO2)−Pt−Pb(ZrxTi1−x)O3 //Физика твердого тела. 2009. Т.51. В.7. С.1268-1271.65.Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. Микроэлектроника.Физические и технологические основы, надежность// Технологиялабораторного эксперимента. Москва: Высшая школа,1986. C. 464.66.Y.M. Poplavko, M.E. Ilchenko, L.P. Pereverzeva, Y.V.
Prokopenko, V.D.Yeremka, A.G. Yushchenko. Microwave annealing of integratedferroelectric films // IEEE Xplore. Microwave Conference, 24th European,5-9 Sept. 1994. 1994. V.2. P.1215-1221.67.A.Z. Simões, M.A. Ramírez, B.D. Stojanoviс, E. Longo, J.A. Varela. Theeffect of microwave annealing on the electrical characteristics of lanthanumdoped bismuth titanate films obtained by the polymeric precursor method //Applied Surface Science. 2006. V.252. P.8471–8475.68.A.Z.
Simões, M.P. Cruz, A. Ries, E. Longo, J.A. Varela, R. Ramesh.Ferroelectric and piezoelectric properties of bismuth titanate thin filmsgrown on different bottom electrodes by soft chemical solution andmicrowave annealing // Materials Research Bulletin. 2007. V.42. P.975–981.69.S.
V. Danilova, G. I. Ovchinnikova, and Yu. A. Pirogov. MicrowaveAnnealing of Defects in Ferroelectric Triglycine Sulfate // Physics of WavePhenomena. 2011. V.19. No.4. P.301–30470.Ankam Bhaskar, H.Y. Chang, T.H. Chang and S.Y. Cheng. Effect ofmicrowave annealing temperatures on lead zirconate titanate thin films //Nanotechnology.
2007. V.18. P.395704 -1 - 395704 -7.11671.Z.J. Wang, Z.P. Cao, Y. Otsuka, N. Yoshikawa, H. Kokawa, and S.Taniguchi. Low-temperature growth of ferroelectric lead zirconate titanatethin films using the magnetic field of low power 2.45 GHz microwaveirradiation. // Applied Physics Letters. 2008. V.92. P.222905-1 - 222905-3.72.Z.J. Wang, Y. Otsuka, Z. Cao, N. Yoshikawa, and H. Kokawa. Rapidcrystallization of sol–gel-deposited lead zirconate titanate thin films by2.45 GHz microwave irradiation // Japanese Journal of Applied Physics.2008.
V.47. No.9. P. 7519–7522.73.A. Bhaskar, T.-H. Chang, H.-Y. Chang, S.-Y. Cheng. Pb(Zr0.53Ti0.47)O3thin films with different thicknesses obtained at low temperature bymicrowave irradiation // Applied Surface Science. 2009. V.255. P.3795–3800.74.Z. Wang, Y. Chen, Y. Otsuka, M. Zhu, Z. Cao, and H. Kokawa.Crystallization of ferroelectric lead zirconate titanate thin films bymicrowave annealing at low temperatures // Journal of American CeramicSociety. 2011. V.94. I.2.
P.404–409.75.Д.Н. Хмеленин, О.М. Жигалина, К.А. Воротилов, И.Г. ЛебоКристаллизацияплёнокцирконата-титанатасвинцас помощьюлазерного отжига // ФТТ. 2012. Т.54. В.5. С. 939-941.76.W. X. Xianyu, H. S. Cho, J. Y. Kwon, H.X. Yin and T. Noguchi. Excimer(XeCl) Laser Annealing of PbZr0.4Ti0.6O3 Thin Film at Low Temperaturefor TFT FeRAM Application // MRS Proceedings. 2004. V.830.P.D.3.6.77.P.P. Donohue, M.A.Todd. Pulse-extended excimer laser annealing of leadzirconate titanate // Integrated Ferroelectrics. V.31. I.1.
2000 . P.285-296.78.Y. Zhu, J. Zhu, Y.J. Song, S.B. Desu. Laser-assisted low temperatureprocessing of Pb(Zr,Ti)O3 thin film // Applied Physics Letters. 1998. V.73.P.1958-1960.79.S. C. Lai, Hang-Ting Lue, K. Y. Hsieh, S. L. Lung, and Rich Liu et al.Extended-pulse excimer laser annealing of P(Zr1−xTix)O3 thin film on117LaNiO3 electrode // Journal ofApplied Physics. 2004.
V.96. No.5.P.2779-2784.80.H.C. Pan, C.-C. Chou, H.-L. Tsai. Low-temperature processing of sol-gelderived La0,5Sr0,5MnO3 buffer electrode and PbZr0,52Ti0,48O3 filmsusing CO2 laser annealing // Applied Physics Letters. 2003. V.83. P.31563158.81.M. Knite, L. Shebanovs, G. Mezinskis, I. Pedaja, and A. Sternberg. CO2 Laser Induced Structure Changes in PZT Sol-Gel Films // Ferroelectrics.2003. V.286. I.1. P.321-326.82.X.
Chen, M. Yagi. Development of crystallization of PZT films by laserannealing // Ricoh Technical Report. 2014. No.39. P.133-138.83.Femtosecond Laser Pulses: Principles and Experiments [Текст] / C.Ruiliere (ed). 2nd edition. 2005. XVI. P. 426.84.Крюков П.Г. Фемтосекундные импульсы. Введение в новую областьлазерной физики. Учебное издание - М.: ФИЗМАТЛИТ, 2008. C.208.85.H.C. Pan, C.-C.
Chou, H.-L. Tsai. Low-temperature processing of sol-gelderived La0,5Sr0,5MnO3 buffer electrode and PbZr0,52Ti0,48O3 filmsusing CO2 laser annealing. // Applied Physics Letters. 2003. V.83. P.31563158.86.Г.А. Качурин, С.Г. Черкова, В.А. Володин, Д.В.
Марин, M.Deutschmann. Действие мощных нано- и фемтосекундных лазерныхимпульсов на кремниевые наноструктуры // ФТП. 2007. Т.42.Вып. 2.С.181-186.87.G. Rosenman, P. Beker, I. Koren, M. Yevnin, B. Bank-Srour, E. Mishina,S. Semin Bioinspired peptide nanotubes: deposition technology, basicphysics and nanotechnology applications // Journal of Peptide Science.2011. V.17.P.
75 –87.88.X. Chen, O. Nadiarynkh, S. Plotnikov, P. Campagnola Second harmonicgeneration microscopy for quantitative analysis of collagen fibrillarstructure // Nature protocol. 2012. V. 7. I.4. P. 654 – 669.11889.С.В. Семин, К.В. Швырков Исследование оптических свойстворганических наноструктур на основе пептидных нанотрубок // 7Международная научно-техническая конференция INTERMATIC2010: Тез.
докл. – Москва. 2010. Т.1. C. 138-140.90.Shen Y. R. Surfaces probed by nonlinear optics // Surface Science. 1994.V.300. P. 551 – 562.91.P. Güthner and K. Dransfeld. Local poling of ferroelectric polymers byscanning force microscopy // Applied Physics Letters. 1992. V.61. P.11371140.92.V. Likodimos, M.
Labardi, and M. Allegrini. Domain pattern formationand kinetics on ferroelectric surfaces under thermal cycling using scanningforce microscopy // Physics Review B. 2002. V.66. P. 024104.93.C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D.Williams, R. Ramesh and J. F. Scott. Polarization relaxation kinetics and180° domain wall dynamics in ferroelectric thin films // Physics Review B.2001. V.65.
P. 014101.94.V. Likodimos, X. K. Orlik, L. Pardi, M. Labardi, and M. Allegrinia.Dynamical studies of the ferroelectric domain structure in triglycine sulfateby voltage-modulated scanning force microscopy. // Journal of AppliedPhysics. 2001. V.87. No.1. P.443-451.95.X. K. Orlik, V. Likodimos, L. Pardi, M. Labardi, and M. Allegrini.Scanning force microscopy study of the ferroelectric phase transition intriglycine sulfate // Applied Physics Letters . 2000.
V.76. No.10. P. 1321 –1323.96.M.P. De Santo. Electrical properties of surfaces analyzed by scanningprobe techniques. // PhD Thesis. Dipartimento di Fizika, Universita dellaCalabria, Italy, 2000.97.БатавинВ.В.,КонцевойЮ.А.,ФедоровичЮ.В.Измерениепараметров полупроводниковых материалов и структур. – М.: Радио исвязь, 1985. C.264.11998.D. Fuchs, M. Adam, P. Schweiss et all. Structural properties of slightly offstoichiometric homoepitaxial SrTixO3 thin films. // Journal of AppliedPhysics. 2000. V.88.
No.4. P. 1844-1850.99.Y. Uesu, S. Kurimura,Y. Yamamoto. Optical second harmonic images of90° domain structure in BaTiO 3 and periodically inverted antiparalleldomains in LiTaO 3 // Applied Physics Letters. 1995. V.66. P. 2165-2168.100. J.A. Hooton, and W.J. Merz. Etch Patterns and Ferroelectric Domains inBaTiO 3 Single Crystals // Physical Review. 1955. V.98, P.409-412.101. S.W. Liu, J.
Chakhalian, Min Xiao, C.L. Chen. Second harmonicgeneration and ferroelectric phase transitions in thick and ultrathinPb0.35Sr0.65TiO3 films on (001) MgO substrates // Applied PhysicsLetters. 2007. V.90. P.042901-1 - 042901-3.102. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev. Effect of MechanicalBoundary Conditions on Phase Diagrams of Epitaxial Ferroelectric ThinFilms // Physical Review Letters. 1998 V. 80.