ALG#05 (1085235)
Текст из файла
Конечные поля.
Простейшие свойства полей: Р – поле – это коммутативное К с е, в котором каждый ненулевой элемент обратим. .
Свойства:
-
(P,+) – коммутативная группа G
-
-
-
a+b=b+a
-
-
-
т.к. К – коммутативно значит ab=ba
Пример1: рациональные действия, комплексные числа – поля.
Пример2: GF(2) – поле Галуа (конечное поле)
- такое множество элементов {0,e} – поле.
Пример3: Zp (если р – простое) – поле.
Пример4: - множество таких чисел образует поле. Оно больше Q, но меньше поля R.
Опр: Характеристика поля Р – минимальное натуральное число р. . Если такого р не существует, по определению полагают р=0.
Пример5: GF(2), т.к. e+e=0, т.е. 2e=0, a .
Пример6: R .
Пусть Р – конечное поле. Построим последовательность: e,2e,3e,…,ne, т.к. в поле конечное число элементов значит где-то есть повторения: (Пусть k>j)
Пусть ke=je; (k-j)e=0. (k-j) – какое-то натуральное число, пусть не min, т.е. это верхняя граница значит есть min. Значит если Р – конечно, то , т.е. конечное поле имеет конечную характеристику.
Замечание: Обратное не верно, существуют бесконечные поля, имеющие конечную характеристику.
Утв1: Пусть Р – конечное поле - простое число.
Док-во: от противного. Пусть
Лемма: “В поле нет делителей нуля”.
Док-во: Пусть , а т.к.
b=0 – противоречит с выбором b. Значит в поле отсутствует делитель нуля
2) – противоречит тому, что Р – поле, следовательно наше предположение о том, что Р=n1 n2 – ошибочно, значит Р – простое число.
Опр.: Пусть Р – поле следовательно множество Q P – подполе Р, если Q
P и Q – поле.
Пример: Q < R < C
Опр.: Поле называется простым, если оно не содержит собственных подполей, т.е. если Q<P значит Q=P (более простых полей, чем Р в нем нет).
Теорема: В каждом поле существует, причем единственное, простое подполе.
Доказательство:
1) Пусть char P=0, e P
Пусть Q<P. Тогда рассмотрим множество Q*=Q\0 – множество ненулевых элементов подполя Q – это мультипликативная группа, а Q* P*. Тогда Q*<P*, а е – подгруппа Q* совпадает с е в Р*, т.к. ab-1
Q*; пусть a
Q*, b=a и е=аа-1
Q*, т.е. е
Q* - единица принадлежит подполю
Qэ{0,e}, а т.к. Qэe , то 2e, 3e, …
Q – в силу замкнутости по сложению.
а т.к. (Q,+) – группа, то -е, -2е, -3е, …
Q
n
\0, (ne)-1
Q – существование обратного по умножению
m
, n
\0, (me)(ne)-1=
e
Q – в силу замкнутости по умножению
Вывод: если char P=0, то { e
Q
P, m
, n
\0}=P0, т.е. если Q – подполе, то P0
Q, для
Q<P.
Теперь покажем, что Р0 – поле:
-
=
операции сложения и умножения замкнуты
-
ассоциативность, коммутативность следуют из ассоциативности, коммутативности Р
-
дистрибутивность
-
обратное по сложению
-
обратное по умножению
Р0 – поле.
Покажем, что Р0 – простое поле: Пусть существует Q'<P0, а по доказанному P0<Q' следовательно Q'=P0 ч.т.д.
Замечание: из доказательства следует, что простое подполе поля с характеристикой равной нулю изоморфно полю рациональных чисел, т.к. {
Q
P, m
, n
\0}=P0 (е – опускаем).
2) Пусть char P=Р
а) т.к. Q<P значит e Q (было доказано выше), следовательно е,2е,…,(р-1)е, ре=0, следовательно {0, e, 2e, …, (p-1)e}=P0
Рассмотрим Zp: пусть : P0
Zp
(a,e)=[a]p – взаимно однозначное отображение
(ae
be)=
(ae)
(be), где
следовательно P0 Zp (т.е. изоморфны), значит т.к. Р0 - поле, т.к. Zp – поле.
б) Р0 – простое, т.к. Q' P0 и P0
Q' следовательно Q'=P0 ч.т.д.
Теорема: Пусть P – конечное поле, тогда существует
Р : ord
=
-1; (ord
- по умножению в мультипликативной группе Р*).
Опр.: В конечном поле элемент
с таким свойством называется примитивным
Т.е. в конечном поле существует примитивный элемент, где 0,
1,
2, …,
|P|-1 – все различные элементы поля Р
{В абелевой группе существует
: ord
=expG}
expG=min{t :
G,
t=e}
1) expP*=|P|-1
expP*/|P*|=|P|-1
Пусть expP*<|P|-1 следовательно XexpP*-1=0 – это уравнение имеет в поле Р (|P|-1)-решений, т.е. ненулевой элемент в поле – решение.
противоречие: решений > степени уравнения (что противоречит теореме Безу)
expP*<|P|-1
2) P* - абелева группа, значит существует : ord
=expP*
Из 1) и 2) следует утверждение теоремы.
Кольцо многочленов над полем
Пусть Р – поле;
Обозначим: Р - множество носителей с элементами из Р; (а0 а1 а2 … ), аj
Р
Р
: если (а0 … аn …)
, то
k : аj=0, для j
k, т.е. начиная с какого-то номера они все нули.
Определим на множестве :
+
=
, ck=ak+bk
Ч
=
, ck=
ajbk-j
Теорема: ( ,+,Ч) – коммутативное кольцо.
Доказательство: "по сложению":
1) +
, т. к. начиная с max(k, n) – все нули.
2) эта операция коммутативна
3) =(0, 0, …)
4) - =( -а0 ,-а1, …)
"по умножению": 1) замкнутость Ч
=
max{j, aj
0}=k, max{j, bj
0}=n, тогда cn+k+1=
ajbn+k-j+1=0
0,0,….,0
a0, a1, …, ak, ….…, an+k+1
- сумма индексов в столбце всегда (n+k+1)
bn+k+1,…, bn+1,…..,b1,b0
0 ,0,……,0
каждое произведение равно 0
при таком определении умножения мы из множества
не выходим.
2) коммутативность:
ck= ajbk-j=
bk-jaj=
bj'ak-j'=dk, где
=(
Ч
),
=(
Ч
)
3) ассоциативность: пусть ( Ч
)=
, (
Ч
)=
и (
Ч
)
=
,
(
Ч
)=
,
тогда dk= (vjck-j)=
asbj-sck-j
fk= aswk-s=
asbjck-j=
asbjct
( +
)
=
+
ч.т.д.
вот это кольцо - кольцо многочленов над полем
Введем обозначения: Ч (
)=(0,а0,а1,а2, …) – такое умножение {ck=
ajbk-j=ak-1 при k-j=1
j=k-1} есть сдвиг последовательности вправо а(0,1,0,…,0)=(0,а,0,…,0);
=
(0,…,аj,0,…)=
аj(0,…,1,0,…)=
аj(0,1,0…)j={ ]x=(0,1,0,...)}=
аjxj
Опр.: Будем говорить, что многочлен a(x) делит b(x), т.е. a(x)Ѕb(x), если существует с(х) : a(x)Ч c(x)=b(x)
Опр.: Степень многочлена a(x) – deg a(x) – номер наибольшего ненулевого коэффициента в представлении: a(x)= ajxj.
Если а(х)=0, то полагаем deg a(x)= -
(примечание: пусть a(x)=a0 0 тогда deg a(x)=0).
Опр.: Разделить a(x) на b(x) с остатком – значит, что b(x) можно представить в виде b(x)=q(x)a(x)+r(x), deg r(x)<deg a(x)
Утв.: Если а(х) 0, то любой многочлен над полем можно разделить с остатком на а(х) и представление b(x)=q(x)a(x)+r(x), deg r(x)<deg a(x) определено однозначно.
Доказательство:
a(x) 0 следовательно deg a(x)
0
a(x)=anxn+an-1xn-1+…+a0 (an 0)
b(x)=bmxm+bm-1xm-1+…+b0
-
m<n следовательно b(x)=0.a(x)+b(x)
-
m
n следовательно b(x)-a(x).an-1bmxm-n=bm-1(1)xm-1+…+b0(1)=b(1)(x)
{т.е. степень понизили как минимум на 1}
Если deg b(n)(x)<n, то STOP иначе понижаем степень дальше также;
b(x)-a(x)an-1bmxm-n-a(x)an-1bdeg b(')(x)(1)xdeg b(')(x)-n=r(x); deg r(x)<n
(за конечное число шагов такое неравенство обязательно получим)
значит b(x)-a(x)q(x)=r(x)
Однозначность деления: -доказательство от противного-
пусть существует: b(x)=a(x)q'(x)+r'(x) deg r'(x)<deg a(x)
b(x)=a(x)q(x)+r(x) deg r(x)<deg a(x)
Вычитаем: 0=a(x)(q'(x)-q(x))+r'(x)-r(x) следовательно
r(x)-r'(x)=a(x)(q'(x)-q(x))
deg (r(x)-r'(x))<deg a(x)
deg a(x)(q'(x)-q(x))=deg a(x)+deg (q'(x)-q(x)) deg a(x)
возникает противоречие, т.е. q'(x)-q(x)=0 следовательно q'(x)=q(x) ч.т.д.
(ab)c=a(bc); пусть (ab)=u, (bc)=v, тогда
ak-jvj=
asbj-s)ck-j=
asbj-sck-j=
asbj-sck-j={замена t=k-j
j=k-t}= =
asbk-t-sct={замена l=k-s
s=k-l}=
ak-lbl-tct
ujck-j=
ak-jvj.
Алгоритм Евклида
a(x)=b(x)q1(x)+r1(x) deg r1(x)<deg b(x)
b(x)=r1(x)q2(x)+r2(x) deg r2(x)<deg r1(x)
………………………………. …………………………….
rs(x)=rs+1(x)qr+2(x)+rs+2(x) deg rs+2(x)<deg rs+1(x)
deg b(x)=const>deg r1(x)>deg r2(x)>…>rn(x)>…
deg rn(x)<0 rn(x)=0
Берем первый раз, когда встречается 0: rn-2(x)=rn-1(x)qn(x)+rn(x)=0
Теорема: ] даны a(x), b(x) – ненулевые многочлены. Тогда последний ненулевой остаток при делении в алгоритме Евклида равен (a(x), b(x))
Опр.: NOD многочленов a(x), b(x) – многочлен d(x):
1) d(x)|a(x); d(x)|b(x)
2) d'(x)|a(x), d'(x)|b(x) следовательно d'(x)|d(x)
Замечание: для определенности считаем, что старший коэффициент многочлена равен 1.
Лемма: (a(x),b(x))=(a(x)-c(x)b(x),b(x)), для любого a(x),b(x),c(x)
Доказательство:
" " пусть (a(x),b(x))=d(x); d'(x)=(a(x)-c(x)b(x),b(x));
Из того что d(x)|a(x) и d(x)|b(x) следует, что a(x)=d(x)q1(x) и b(x)=d(x)q2(x)
a(x)-b(x)c(x)=d(x)(q1(x)-c(x)q2(x)) следовательно d(x)|(a(x)-c(x)b(x)) значит d(x)|d'(x)
" " Из соотношений d'(x)|(a(x)-c(x)b(x)) и d'(x)|b(x) следует, что
a(x)-c(x)b(x)=d'(x)q1(x) и b(x)=d'(x)q2(x)
a(x)-c(x)b(x)+c(x)b(x)=d'(x)q1(x)+c(x)d'(x)q2(x)=d'(x)[q1(x)+q2(x)c(x)] значит d'(x)|d(x)
т.к. d(x)|d'(x) и d'(x)|d(x) докажем, что d'(x)=d(x):
d'(x)=l(x)d(x)
d(x)=m(x)d'(x)
d(x)=l(x)m(x)d(x) следовательно d(x)(1-l(x)m(x))=0
deg d(x) 0 следовательно 1-l(x)m(x)=0;
l(x)m(x)=1, при l(x) 0, m(x)
0
deg (l(x)m(x))=deg l(x)+deg m(x)=0,
deg l(x),deg m(x) 0;
d'(x)=m(x)d(x), где m(x)=const значит m(x)=1 (см. замечание)
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.