Главная » Просмотр файлов » Лекции по физике. Оптика. Элементы квантовой механики

Лекции по физике. Оптика. Элементы квантовой механики (1083144), страница 9

Файл №1083144 Лекции по физике. Оптика. Элементы квантовой механики (Лекции по физике. Оптика. Элементы квантовой механики) 9 страницаЛекции по физике. Оптика. Элементы квантовой механики (1083144) страница 92018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

9.2. Соотношение неопределенностей Гейзенберга

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель рх имеет точное значение, равное 0, так что неопределенность импульса рх= 0, зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность х, но это достигается ценой утраты определенности значения рх. Действительно, вследствии дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах некоторого угла 2, где – угол, соответствующий первому дифракционному минимуму. Таким образом, появляется неопределенность импульса

рх=рsin . (8)

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели шириной х соответствует угол , для которого [cм. (4.8) при b=х и m=1]

sin=/ х. (9)

Следовательно,

рх/ х. (10)

Отсюда с учетом (1) получается соотношение

хрх=h (11)

В общем случае соотношение

хрх h, yрy h, zрz h (12)

называют соотношением неопределенностей Гейзенберга.

Из него следует, что чем точнее определена координата (х мало, т.е. узкая щель), тем больше неопределенность в импульсе частицы рх h/х. Точность определения импульса будет возрастать с увеличением ширины щели х [cм. (9), (8)] и при х не будет наблюдаться дифракционная картина, и поэтому неопределенность импульса рх будет такой же, как и до прохождения частицы через щель, т.е. рх=0. Но в этом случае не определена координата х частицы, т.е. х.

Невозможность одновременно точно определить координату и импульс (скорость) не связана с несовершенством методов измерения или измерительных приборов. Соотношение неопределенности является квантовым ограничением применимости классической механики к микрообъектам.

Выразим (11) в виде

хvх h/m. (13)

Из (13) следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости. Для пылинки массой 10-12 кг и линейными размерами 10-6 м, координата которой определена с точностью до 0.01 от ее размеров (т.е. х=10-8 м) неопределенность скорости согласно (13) vх=6.6210-31/(10-810-12)=6.6210-14 м/c, т.е. будет ничтожно малой. Т. о. для макроскопических тел их волновые свойства не играют никакой роли, координата и скорость макротел могут быть измерены достаточно точно.

В квантовой механике рассматривается также соотношение неопределенностей между энергией частицы Е и временем t нахождения частицы в данном энергетическом состоянии (или времени наблюдения за состоянием частицы). Оно аналогично (11) и имеет вид

Еth. (14)

Из (14) следует, что частота излучения фотона также должна иметь неопределенность

v Е/h, (15)

т.е. линии спектра должны характеризоваться частотой vv. Действительно, опыт показывает, что все спектральные линии размыты.

9.3. Волновая функция и ее статистический смысл

Мы привыкли к тому, что физически реальное – измеримо. Бор и Гейзенберг сделали обратное высказывание: «Принципиально неизмеримое – физически нереально». Поэтому «не надо говорить о вещах, которые невозможно измерить» (Фейнман). Поскольку из соотношения неопределенностей следует, что частица не имеет одновременно импульс и координату, то не следует об этом и говорить. А «говорить» следует о волновой функции, которая описывает микросостояние системы, ее волновые свойства.

Де Бройль связал со свободно движущейся частицей плоскую волну. Известно [cм. (1.5), (1.6)], что плоская волна, распространяющаяся в направлении оси х описывается уравнением

S=Acos(t- kх+О)

или в экспоненциальной форме

S=АOехр[i(t- kх+О)].

Заменив в соответствии с (1) и (2) и k=2/ через Е и p, уравнение волны де Бройля для свободной частицы пишут в виде

=АOехр[(-i/ )(Еt- pх)] (16)

(в квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет  2, то это [cм. (16)] несущественно).

Функцию называют волновой функций или пси-функцией. Она, как правило, бывает комплексной.

Интерпретацию волновой функции дал в 1926 г. Борн: квадрат модуля волновой функции определяет вероятность того, что частица будет обнаружена в пределах объема dV:

dP= 2 dV=*, (17)

где * комплексно-сопряженная волновая функция.

Величина  2=* = dP/ dV – имеет смысл плотности вероятности.

Интеграл от (17), взятый по всему пространству, должен равняться единице (вероятность достоверного события Р=1).

(18)

Выражение (18) называют условием нормировки.

Отметим еще раз, что волновая функция описывает микросостояние частицы, ее волновые свойства, и она позволяет ответить на все вопросы, которые имеет смысл ставить. Например, найти энергию и импульс частицы. Для этого следует вычислить следующие частные производные по координате х и времени t:

откуда

. (19)

9.4. Уравнение Шредингера для стационарных состояний

В развитие идеи де Бройля о волновых свойствах частиц Шредингер в 1926 г. получил уравнение

, (20)

где m – масса частицы, – мнимая единица, U – потенциальная энергия частицы, – оператор Лапласа [см. (1.10)].

Решение уравнения Шредингера позволяет найти волновую функцию (x,y,z,t) частицы, которая описывает микросостояние частицы и ее волновые свойства.

Если поле внешних сил постоянно во времени (т.е. стационарно), то U не зависит явно от t. В этом случае решение уравнения (20) распадается на два множителя

(x, y, z, t) =(x, y, z) exp[-i(E/ )t], (21)

где E/ =.

В стационарном случае уравнение Шредингера имеет вид

, (22)

где Е, U – полная и потенциальная энергия, m – масса частицы.

Следует заметить, что исторически название "волновой функции" возникло в связи с тем, что уравнение (20) или (22), определяющее эту функцию, относится к виду волновых уравнений.

9.5. Собственные функции и собственные значения. Свободная частица

Функции , удовлетворяющие уравнению Шредингера при данных U, называются собственными функциями.

Значения Е, при которых существуют решения уравнения (22), называются собственными значениями.

В качестве примера определим и Е для свободной частицы.

Свободной называют частицу, на которую не действуют силы, т.е. . Следовательно, U(x)=const и ее можно принять равной нулю. Таким образом, в случае свободного движения частицы, ее полная энергия совпадает с кинетической, а скорость . Направим ось Х вдоль вектора . Тогда (22) можно записать в виде

. (23)

Прямой подстановкой можно убедится, что частным решением этого уравнения является функция (х)=Аexp(ikx), где А=сonst, k=const c собственным значением энергии

Е= . (24)

C учетом (21) волновая функция

(х)=Аexp(-it+ ikx)= Аexp[-(i/ )(Еt- рxх)]. (25)

здесь =Е/ , k=рx/ .

Функция (25) представляет собой плоскую монохроматическую волну де Бройля [cм. (16)].

Из (24) следует, что зависимость энергии от импульса

Е= 2k2/(2m)=Рх2/(2m)=mv2/2 (26)

оказывается обычной для нерелятивиских частиц. Следовательно, энергия свободной частицы может принимать любые значения, т.е. ее энергетический спектр является непрерывным.

Плотность вероятности обнаружить частицу в данной точке пространства

 2=*=A2,

т.е. все положения свободной частицы в пространстве являются равновероятными.

9.6. Частица в одномерной прямоугольной «потенциальной яме»

Такая «яма» описывается потенциальной энергией вида

При таком условии частица не проникает за

пределы "ямы", т.е. (0)= (l)=0. (27)

В пределах ямы (0<x<l) уравнение (22) сведется к уравнению

или , (28)

где k2= . Общее решение (28) (х)=Аsinkx+Bcoskx. (29)

Так как согласно (27) ψ(0)=0, то В=0, тогда (х)=Аsinkx . (30)

Условие (27) (l)=Аsinkl=0 выполняется только при kl=n, где n=1,2...целые числа, т.е. необходимо, чтобы k=n/l. (31)

Из (29) и (31) следует, что (32)

Таким образом, энергия в «потенциальной яме» принимает лишь определенные, дискретные значения, т.е. квантуется. Квантованные значения энергии Еn называются уровнями энергии, а число n, определяющее энергетические уровни, называется главным квантовым числом.

Заметим, что n=1 cоответствует минимальная энергия Е10.

Характеристики

Тип файла
Документ
Размер
8,76 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее