Лекции по физике. Оптика. Элементы квантовой механики (1083144), страница 9
Текст из файла (страница 9)
9.2. Соотношение неопределенностей Гейзенберга
Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель рх имеет точное значение, равное 0, так что неопределенность импульса рх= 0, зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность х, но это достигается ценой утраты определенности значения рх. Действительно, вследствии дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах некоторого угла 2, где – угол, соответствующий первому дифракционному минимуму. Таким образом, появляется неопределенность импульса
рх=рsin . (8)
Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели шириной х соответствует угол , для которого [cм. (4.8) при b=х и m=1]
sin=/ х. (9)
Следовательно,
рх=р/ х. (10)
Отсюда с учетом (1) получается соотношение
хрх =р=h (11)
В общем случае соотношение
хрх h, yрy h, zрz h (12)
называют соотношением неопределенностей Гейзенберга.
Из него следует, что чем точнее определена координата (х мало, т.е. узкая щель), тем больше неопределенность в импульсе частицы рх h/х. Точность определения импульса будет возрастать с увеличением ширины щели х [cм. (9), (8)] и при х не будет наблюдаться дифракционная картина, и поэтому неопределенность импульса рх будет такой же, как и до прохождения частицы через щель, т.е. рх=0. Но в этом случае не определена координата х частицы, т.е. х.
Невозможность одновременно точно определить координату и импульс (скорость) не связана с несовершенством методов измерения или измерительных приборов. Соотношение неопределенности является квантовым ограничением применимости классической механики к микрообъектам.
Выразим (11) в виде
хvх h/m. (13)
Из (13) следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости. Для пылинки массой 10-12 кг и линейными размерами 10-6 м, координата которой определена с точностью до 0.01 от ее размеров (т.е. х=10-8 м) неопределенность скорости согласно (13) vх=6.6210-31/(10-810-12)=6.6210-14 м/c, т.е. будет ничтожно малой. Т. о. для макроскопических тел их волновые свойства не играют никакой роли, координата и скорость макротел могут быть измерены достаточно точно.
В квантовой механике рассматривается также соотношение неопределенностей между энергией частицы Е и временем t нахождения частицы в данном энергетическом состоянии (или времени наблюдения за состоянием частицы). Оно аналогично (11) и имеет вид
Еth. (14)
Из (14) следует, что частота излучения фотона также должна иметь неопределенность
v Е/h, (15)
т.е. линии спектра должны характеризоваться частотой vv. Действительно, опыт показывает, что все спектральные линии размыты.
9.3. Волновая функция и ее статистический смысл
Мы привыкли к тому, что физически реальное – измеримо. Бор и Гейзенберг сделали обратное высказывание: «Принципиально неизмеримое – физически нереально». Поэтому «не надо говорить о вещах, которые невозможно измерить» (Фейнман). Поскольку из соотношения неопределенностей следует, что частица не имеет одновременно импульс и координату, то не следует об этом и говорить. А «говорить» следует о волновой функции, которая описывает микросостояние системы, ее волновые свойства.
Де Бройль связал со свободно движущейся частицей плоскую волну. Известно [cм. (1.5), (1.6)], что плоская волна, распространяющаяся в направлении оси х описывается уравнением
S=Acos(t- kх+О)
или в экспоненциальной форме
S=АOехр[i(t- kх+О)].
Заменив в соответствии с (1) и (2) и k=2/ через Е и p, уравнение волны де Бройля для свободной частицы пишут в виде
(в квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет 2, то это [cм. (16)] несущественно).
Функцию называют волновой функций или пси-функцией. Она, как правило, бывает комплексной.
Интерпретацию волновой функции дал в 1926 г. Борн: квадрат модуля волновой функции определяет вероятность того, что частица будет обнаружена в пределах объема dV:
dP= 2 dV=*, (17)
где * – комплексно-сопряженная волновая функция.
Величина 2=* = dP/ dV – имеет смысл плотности вероятности.
Интеграл от (17), взятый по всему пространству, должен равняться единице (вероятность достоверного события Р=1).
Выражение (18) называют условием нормировки.
Отметим еще раз, что волновая функция описывает микросостояние частицы, ее волновые свойства, и она позволяет ответить на все вопросы, которые имеет смысл ставить. Например, найти энергию и импульс частицы. Для этого следует вычислить следующие частные производные по координате х и времени t:
откуда
9.4. Уравнение Шредингера для стационарных состояний
В развитие идеи де Бройля о волновых свойствах частиц Шредингер в 1926 г. получил уравнение
где m – масса частицы, – мнимая единица, U – потенциальная энергия частицы, – оператор Лапласа [см. (1.10)].
Решение уравнения Шредингера позволяет найти волновую функцию (x,y,z,t) частицы, которая описывает микросостояние частицы и ее волновые свойства.
Если поле внешних сил постоянно во времени (т.е. стационарно), то U не зависит явно от t. В этом случае решение уравнения (20) распадается на два множителя
(x, y, z, t) =(x, y, z) exp[-i(E/ )t], (21)
В стационарном случае уравнение Шредингера имеет вид
где Е, U – полная и потенциальная энергия, m – масса частицы.
Следует заметить, что исторически название "волновой функции" возникло в связи с тем, что уравнение (20) или (22), определяющее эту функцию, относится к виду волновых уравнений.
9.5. Собственные функции и собственные значения. Свободная частица
Функции , удовлетворяющие уравнению Шредингера при данных U, называются собственными функциями.
Значения Е, при которых существуют решения уравнения (22), называются собственными значениями.
В качестве примера определим и Е для свободной частицы.
Свободной называют частицу, на которую не действуют силы, т.е. . Следовательно, U(x)=const и ее можно принять равной нулю. Таким образом, в случае свободного движения частицы, ее полная энергия совпадает с кинетической, а скорость
. Направим ось Х вдоль вектора
. Тогда (22) можно записать в виде
Прямой подстановкой можно убедится, что частным решением этого уравнения является функция (х)=Аexp(ikx), где А=сonst, k=const c собственным значением энергии
C учетом (21) волновая функция
(х)=Аexp(-it+ ikx)= Аexp[-(i/ )(Еt- рxх)]. (25)
Функция (25) представляет собой плоскую монохроматическую волну де Бройля [cм. (16)].
Из (24) следует, что зависимость энергии от импульса
Е= 2k2/(2m)=Рх2/(2m)=mv2/2 (26)
оказывается обычной для нерелятивиских частиц. Следовательно, энергия свободной частицы может принимать любые значения, т.е. ее энергетический спектр является непрерывным.
Плотность вероятности обнаружить частицу в данной точке пространства
2=*=A2,
т.е. все положения свободной частицы в пространстве являются равновероятными.
9.6. Частица в одномерной прямоугольной «потенциальной яме»
Такая «яма» описывается потенциальной энергией вида
При таком условии частица не проникает за
пределы "ямы", т.е. (0)= (l)=0. (27)
В пределах ямы (0<x<l) уравнение (22) сведется к уравнению
где k2= . Общее решение (28) (х)=Аsinkx+Bcoskx. (29)
Так как согласно (27) ψ(0)=0, то В=0, тогда (х)=Аsinkx . (30)
Условие (27) (l)=Аsinkl=0 выполняется только при kl=n, где n=1,2...целые числа, т.е. необходимо, чтобы k=n/l. (31)
Из (29) и (31) следует, что (32)
Таким образом, энергия в «потенциальной яме» принимает лишь определенные, дискретные значения, т.е. квантуется. Квантованные значения энергии Еn называются уровнями энергии, а число n, определяющее энергетические уровни, называется главным квантовым числом.
Заметим, что n=1 cоответствует минимальная энергия Е10.