Лекции по физике. Оптика. Элементы квантовой механики (1083144), страница 11
Текст из файла (страница 11)
СП
n = 2
-3,4
СБ
Рис. 1
n = 1
-13,6
СЛ
При переходе электрона с более высоких энергетических уровней на уровень n=1 возникает ультрафиолетовое излучение или излучение серии Лаймана (СЛ). Когда электроны переходя на уровень n = 2 возникает видимое излучение или излучение серии Бальмера (СБ). При переходе электронов с более высоких уровней на уровень n = 3 возникает инфракрасное излучение, или излучение серии Пашена (СП) и т.д.
Частоты или длины волн, возникающего при этом излучения, определяются по формулам (8) или (9) при m=1 – для серии Лаймана, при m=2 – для серии Бальмера и при m = 3 – для серии Пашена. Энергия фотонов определяется по формуле (7), которую с учетом (6) можно привести для водородоподобных атомов к виду:
Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 – 1925 г.) были сделаны важные открытия, например, в области атомной спектроскопии. Однако в теории Бора обнаружились существенные недостатки, например, с ее помощью невозможно создать теорию более сложных, чем атом водорода, атомов. Поэтому становилось очевидным, что теория Бора представляет собой переходной этап на пути создания последовательной теории атомных и ядерных явлений. Такой последовательной теорией явилась квантовая (волновая) механика.
11.4 Атом водорода согласно квантовой механики. Квантовые числа электрона в атоме
Результаты, полученные согласно теории Бора в решении задачи об энергетических уровнях электрона в водородоподобных атомах, получены в квантовой механике без привлечения постулатов Бора. Покажем это.
Состояние электрона в водородоподобном атоме описывается некоторой волновой функцией , удовлетворяющей стационарному уравнению Шредингера [см.(9.22)]. Учитывая, что потенциальная энергия электрона
где r – расстояние между электроном и ядром, получим уравнение Шредингера в виде
Целесообразно воспользоваться сферической системой координат r, , и искать решение этого уравнения в виде следующих собственных функций
где n, l, m – целочисленные параметры собственных функций. При этом n – называют главным квантовым числом, l – орбитальным (азимутальным) и m – магнитным квантовым числом.
Доказывается, что уравнение (12) имеет решение только при дискретных отрицательных значениях энергии
где n = 1, 2, 3,... – главные квантовые числа.
Сравнение с выражением (6) показывает, что квантовая механика приводит к таким же значениям энергии, какие получились и в теории Бора. Однако в квантовой механике эти значения получаются как следствие основных положений этой науки.
Подставив в (14 ) Z = 1 и приняв n = 1, получим значение энергии основного состояния (т.е. состояния с наименьшей энергией) атома водорода
Из решения (13) уравнения Шредингера (12) также следует, что момент импульса электрона в атоме квантуется по формуле
где l= 0, 1, 2, ... (n-1) – орбитальное (азимутальное) квантовое число.
Проекция момента импульса L электрона на направление Z магнитного поля может принимать лишь целочисленные значения, кратные (пространственное квантование) т.е.
m – называют магнитным квантовым числом. При данном магнитное квантовое число может принимать
различных значений.
О
Lz
0
пыт Штерна и Герлаха, а также более ранние эксперименты привели Уленбека и Гаудсмита к гипотезе существования у электрона собственного момента импульса, который был назван спин (spin – верчение).
Lz
0


l=1 l=2
Рис. 2
Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Позднее было показано, что спин имеет квантовую природу. Спин следует считать внутренним свойством, присущим электрону, подобно тому, как ему присущ и заряд и масса.
Собственный момент импульса электрона LS (спин) выражается через спиновое квантовое число s равное 1/2, т.е. спин квантуется по закону
Проекция спина на заданное направление z может принимать два квантованных значения
где ms = s = 1/2 называют магнитным спиновым квантовым числом или просто спиновым квантовым числом, т.е. также как и s.
11.5. Принцип Паули
Итак, состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:
-
Главное квантовое число n (n = 1, 2 ... ).
-
Орбитальное (азимутальное) квантовое число l (l = 0, 1, 2, ... n-1)
-
Магнитное квантовое число m (m = 0, 1, 2, ... l)
-
Спиновое квантовое число ms (ms = 1/2 ).
Для одного фиксированного значения главного квантового числа n существует 2n2 различных квантовых состояний электрона.
Один из законов квантовой механики, называемый принципом Паули, утверждает:
В одном и том же атоме не может быть двух электронов, обладающих одинаковым набором квантовых чисел, (т.е. не может быть двух электронов в одинаковом состоянии).
Принцип Паули дает объяснение периодической повторяемости свойств атома, т.е. периодической системе элементов Менделеева.
Лекция 12. Элементы квантовой электроники
12.1. Поглощение, спонтанное и вынужденное излучение
Пусть Е1, Е2, ... – значения энергии, которые может принимать атом или вообще любая атомная система.
При поглощении фотона с энергией h атом переходит с нижнего уровня m на более высокий энергетический уровень n (рис. 1а), при этом
h = En - Em (1)
Атом может самопроизвольно перейти c высшего энергетического состояния En в низшее Em с излучением фотона (рис.1, б).
n
m
m
En
En
En
Em
Em
Em
Рис. 1
n
n
а) б) в)
m
Такое излучение называют спонтанным (самопроизвольным). Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.
В 1916 г. Эйнштейн постулировал, что кроме поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Обсудим его.
Если на атом, находящийся в возбужденном состоянии Еn, действует внешнее излучение с частотой , удовлетворяющей условию h=Еn-Еm, то возникает вынужденный (индуцированный) переход в состояние m с излучением фотона той же энергии h = Еn - Еm (рис. 1, в). Возникшее при этом излучение называют вынужденным (индуцированным) излучением. Таким образом, в процессе вынужденного излучения вовлечены 2 фотона: первый фотон, вызывающий испускание излучения, и вторичный фотон, испускаемый атомом. Существенно, что, вторичные фотоны неотличимы от первичных, являясь их копией.
Следовательно, вынужденное излучение (вторичные фотоны) тождественны вынуждающему излучению (первичным фотонам): оно имеет такие же частоту, фазу, поляризацию, направление распространения, как и вынуждающее излучение. Т.о. вынужденное излучение строго когерентно с вынуждающим излучением.
Эйнштейн показал, что число dNn атомов, которые из общего числа атомов Nn, находящихся в состоянии n, перейдут в состояние m за время dt
dNn=(Anm+Bnm ) Nn dt , (2)
где Anm – коэффициент Эйнштейна для спонтанного излучения, Bnm – коэффициент Эйнштейна для вынужденного излучения, – спектральная плотность энергии внешнего поля (полная объемная плотность энергии w = W/V связана со спектральной плотностью соотношением w= ).
Под понимается частота nm, соответствующая переходу из состояния n в состояние m.
Взаимодействие атомов в состоянии m с электромагнитным полем может приводить к вынужденному поглощению фотона с энергией h = Еn - Еm и сопровождается переходом атома в состояние n. Число таких атомов
dNm = Bmn Nm dt , (3)
где Bmn – коэффициент Эйнштейна для вынужденного поглощения, Nm – число атомов в состоянии m.
В статистической физике известен принцип детального равновесия (в равновесной термодинамической системе каждый микроскопический процесс сопровождается обратным ему процессом, причем вероятность обоих процессов одинаковая), из которого следует, что
dNn = dNm . (4)
Чтобы вынужденное излучение превосходило спонтанное излучение и вынужденное поглощение необходимо создать неравновесное состояние системы, при котором число атомов в возбужденных состояниях было бы больше, чем их число в основном состоянии. Такие состояния называются состояниями с инверсией населенности или инверсными.
Процесс перевода среды в инверсное состояние называется накачкой усиливающей среды. Накачку можно осуществить оптическими, электрическими и другими способами.
В средах с инверсными состояниями вынужденное излучение может превысить поглощение, вследствие чего падающий пучок света при прохождении через эти среды будет усиливаться (такие среды называются активными).