Диссертация (1025996), страница 20
Текст из файла (страница 20)
Patent No.: US 7,229,474 B2. Method for controlling the position of a permanentmagnetically supported rotating component / Hoffman J., Arndt A., Merkel T.Assignee: Berlin Heart AG, Berlin (DE); Prior Publication Data: US2003/0187321 A1 Oct. 2, 2003. 6 p.171. Polajzer B. et al. Force calculation of the laboratory implementation of a radialactive magnetic bearing // Journal of technical physics. 2002.
Т. 43. № 4. P. 453457.172. ThoratecLVADTechnology[Электронныйресурс].http://www.mylvad.com/lvad-devices/ (дата обращения: 15.05.2017).URL:156173. Quarteroni A., Formaggia L. Mathematical modelling and numerical simulationof the cardiovascular system // Handbook of numerical analysis. 2004. Т. 12. P.3-127.174. Reesink K.D. Modelling and Control Aspects of Left Ventricular Assist / K.D.Reesink. Technische Universiteit Eindhoven, 2002. 109 p.175. Reul H. M., Akdis M. Blood pumps for circulatory support //Perfusion. 2000. Т.15. № 4. P. 295-311.176.
Research Report 2001/2002 / Institute for Biomedical Technologies, AachenUniversity, 2002. 101 p.177. Ricci M. R. et al. Magnetically-levitated blood pump with optimization methodenabling miniaturization: заяв. пат. 15/064,960 США. 2016. 6 p.178. Ricketts D. S., Chabalko M. J., Hillenius A. Experimental demonstration of theequivalence of inductive and strongly coupled magnetic resonance wirelesspower transfer // Applied Physics Letters.
2013. Т. 102. № 5. P. 1-5.179. RobertsonA. M.,SequeiraA.,KamenevaM. V.Hemorheology// Hemodynamical flows. Birkhaeuser Basel, 2008. P. 63-120.180. Sabirin C. R. et al. Modeling and digital control of an active magnetic bearingsystem // Revue roumaine des sciences techniques serie electrotechnique etenergetique. 2007. Т. 52. № 2.
P. 157.181. Sajgalik P. et al. Current Status of Left Ventricular Assist Device Therapy// Mayo Clinic Proceedings. Elsevier, 2016. Т. 91. № 7. P. 927-940.182. Saito S. et al. End-organ function during chronic nonpulsatile circulation // TheAnnals of thoracic surgery. 2002. Т. 74. № 4. P. 1080-1085.183. Santi E. et al. Synergetic control for power electronics applications: a comparisonwith the sliding mode approach // Journal of Circuits, Systems, and Computers.2004.
Т. 13. № 04. P. 737-760.184. Schaffer J. M. et al. Bleeding complications and blood product utilization withleft ventricular assist device implantation // The Annals of thoracic surgery. 2011.Т. 91. № 3. P. 740-749.157185. Schweitzer G. Active magnetic bearings-chances and limitations // IFToMMSixth International Conference on Rotor Dynamics, Sydney, Australia. 2002.Т. 1.
P. 1-14.186. Schweitzer G., Maslen E. H. (ed.). Magnetic bearings: theory, design, andapplication to rotating machinery. Springer-Verlag Berlin Heidelberg, 2009.541 p.187. Sherman C. et al. Research and development: systems for transmitting energythrough intact skin // Final technical report, National Institutes of Health contractN01-HV-2903. 1983.
400 p.188. Sorensen E. N. et al. Computational simulation of platelet deposition andactivation: I. Model development and properties // Annals of biomedicalengineering. 1999. Т. 27. № 4. P. 436-448.189. Sousa L. et al. Computational techniques and validation of blood flow simulation// WEAS Transactions on biology and biomedicine, ISI/SCI Web of Science andWeb of Knowledge. 2011. Т. 8. № 4. P. 145-155.190. Steinschaden N., Springer H. Some nonlinear effects of magnetic bearings// Proceedings of the DETC ASME Conference. 1999. P. 1-8.191. Stern D. R.
et al. Increased incidence of gastrointestinal bleeding followingimplantation of the HeartMate II LVAD // Journal of cardiac surgery. 2010. Т. 25.№. 3. P. 352-356.192. Tavoularis S. et al. Towards optimal control of blood flow in artificial hearts// Cardiovascular Engineering.
2003. Т. 8. № 1-2. P. 20-31.193. Timms D. A review of clinical ventricular assist devices // Medical engineeringand physics. 2011. Т. 33. № 9. P. 1041-1047.194. Ujihara D. Y., Santisteban J. A., Noronha R. F. Rotor modeling of an electricmotor supported by magnetic bearings through the finite element method. 2011.8 p.195. Ündar A. et al. Comparison of six pediatric cardiopulmonary bypass pumpsduring pulsatile and nonpulsatile perfusion // The Journal of thoracic andcardiovascular surgery. 2001. Т. 122. № 4. P.
827-829.158196. Valluvan M. Modelling and control of a magnetic levitation system. 2013. P. 112.197. Veneziani A., Vergara C. Flow rate defective boundary conditions inhaemodynamics simulations // International Journal for Numerical Methods inFluids. 2005. Т. 47. № 8‐9. P. 803-816.198. Vignon-Clementel I. E. A coupled multidomain method for computationalmodeling of blood flow // Mechanical Engineering.
2006. 207 p.199. Wang Z., Zhao Y. The Speed Mode Synergetic Control Approach for MagneticSuspended Reaction Flywheel // Appl. Math. 2013. Т. 7. № . P. 107-11.200. Waters B. H. et al. Powering a ventricular assist device (VAD) with the freerange resonant electrical energy delivery (FREE-D) system // Proceedings of theIEEE. 2012. Т. 100. № 1. P. 138-149.201. Wu J. et al. Computational fluid dynamics analysis of blade tip clearances onhemodynamic performance and blood damage in a centrifugal ventricular assistdevice // Artificial organs. 2010. Т. 34. № 5. P. 402-411.202. Wu Y.
et al. Modeling, estimation and control of cardiovascular systems with aleft ventricular assist device // American Control Conference, IEEE, 2005. P.3841-3846.203. Wurzinger LJ, Opitz R, Eckstein H. Mechanical blood trauma: an overview// Angiology. 1986. T. 38. P. 81-97.204. Yang X. S., Lewis R. W., Zhang H. Y. Finite element analysis of fogelson'smodel for platelet aggregation // Proc. of the European Congress onComputational Methods in Applied Sciences and Engineering. 2004. 5 p.205.
You S. F. Adaptive Backstepping Control of Active Magnetic Bearings. 2010.76 p.206. Yu J., Zhang X. Hydrodynamic and hemolysis analysis on distance and clearancebetween impeller and diffuser of axial blood pump // Journal of Mechanics inMedicine and Biology. 2016. Т. 16. № 2.
14 p.207. Zhang L. et al. Numerical Simulation Investigation on Flow Field of Axial BloodPump // Advances in Computer Science and Engineering. 2012. P. 223-229.159ПРИЛОЖЕНИЕП.1. Приведение модели динамики ротора к безразмерному видуПроведем обезразмеривание системы ((2.33), С. 55) с учетом введенных вТаблице 2 формул перехода. Тогда система (2.33) перепишется в видеEquation Chapter 1 Section 1x1′ = x2 ;cwηπr 2 S L2 lS L SβSx ′cm 2 x2 = −α 2 + cm S x x1 + m (−a1S L + a2 S L ) Sβ β1 + ...St2St2 2 iS+iSiS−iS0 i0 iAx iAx i+k A − + ... δS − ( x1S x − a1S L β1Sβ ) δS x + ( x1S x − a1S L β1Sβ ) x2 2 iS+iSiS−iS0 i0 iBx iBx i+k A − − ... δS x − ( x1S x + a2 S L β1Sβ ) δS x + ( x1S x + a2 S L β1Sβ ) −cwηπr 2 S L2 lS LΩSΩSβ β1 + Fx S F + Ax S F sin ( pSΩ tSt ) + ...+mΩ2 SΩ2eS x cos (ΩSΩ tSt );y1′ = y2 ;cwηπr 2 S L2 lS L SβSx ′cm 2 y2 = −β2 + cm S x y1 + m (a1S L − a2 S L ) Sβα1 + ...St2St2 2 i0 Si + iAy SiiS−iS0 iAy i − + ...+k A δS x − ( y1S x + a1S Lα1Sβ ) δS x + ( y1S x + a1S Lα1Sβ ) 2 2 i0 Si + iBy SiiS−iS0iByi+k A − + ... δS x − ( y1S x − a2 S Lα1Sβ ) δS x + ( y1S x − a2 S Lα1Sβ ) +cwηπr 2 S L2 lS LΩSΩ Sβα1 + Fy S F + Ay S F sin ( pSΩ tSt ) + ...160+mΩ2 SΩ 2eS x sin (ΩSΩ tSt );(П.1.1)α1′ = α 2 ;IxSβα 2 ′ = −I zSt2(ΩSΩcSβ β2 + m (a1S L − a2 S L ) S x y1 + ...2St)cma12 S L2 + a22 S L2 )(1 + km ) − 2a1a2 S L2 (1 − km ) α1 + ...(42 2 i0 Si + iAy SiiS−iS0 iAy i − − ...+a1S L k A δS x − ( y1S x + a1S Lα1Sβ ) δS x + ( y1S x + a1S Lα1Sβ ) +2 2 −i0 Si + iBy SiiSiS0 iBy i − + ...−a2 S L k A δS x − ( y1S x − a2 S Lα1Sβ ) δS x + ( y1S x − a2 S Lα1Sβ ) +M x S M + Bx S M sin ( pSΩ tSt ) + Ω2 SΩ2 γSβ ( I x − I z )cos(ΩSΩ tSt );β1′ = β2 ;IxSβSt2β2′ = I z(cΩSΩSβα 2 + m (−a1S L + a2 S L ) S x x1 + ...2St)cma12 S L2 + a22 S L2 )(1 + km ) − 2a1a2 S L2 (1 − km ) β1 − ...(422i0 Si + iAx Sii0 Si − iAx Si − + ...−a1S L k A δS x − ( x1S x − a1S L β1Sβ ) δS x + ( x1S x − a1S L β1Sβ ) 2 2 iS+iSiS−iS0 iBx i0 iBx i+a2 S L k A − + ... δS x − ( x1S x + a2 S L β1Sβ ) δS x + ( x1S x + a2 S L β1Sβ ) ++M y S M + By S M sin ( pSΩ tSt ) + Ω2 SΩ2 γSβ ( I x − I z )sin (ΩSΩ tSt ) ,где ( )′ – обозначена производная по безразмерному времени t .
Аргументы sin иcos – величины безразмерные, следовательно, масштаб SΩ =1.St161Вынесем S i2 за скобки и, разделив правые части уравнений (П.1.1) намножитель при переменной в левых частях, будем иметьx1′ = x2 ;cm S L Sβ St2cwηπr 2 S L2 lS L Stcm St2′x2 = −x1 +α2 +(−a1 + a2 ) β1 + ...Ixm2mS x22 i0 + iAxi0 − iAx+ − + ...mS x δS x − ( x1S x − a1S L β1Sβ ) δS x + ( x1S x − a1S L β1Sβ ) 222 2 k S S i0 + iBxi0 − iBx − − ...+ A i t mS x δS x − ( x1S x + a2 S L β1Sβ ) δS x + ( x1S x + a2 S L β1Sβ ) cwηπr 2 S L2 lS LΩStS F St2S F St2−β1 + Fx+ Axsin ( pt ) + Ω2e cos (Ω t );IxmS xmS xk A Si2 St2y1′ = y2 ;2 22cm S L Sβ St2cηπrSlSScSwLLtmty2′ = −β2 +y1 +(a1 − a2 )α1 + ...Ixm2mS x2 2 i0 + iAyii−k A Si2 St2 Ay0 − + ...+mS x δS x − ( y1S x + a1S Lα1Sβ ) δS x + ( y1S x + a1S Lα1Sβ ) 222 2 −i+iii k S S 0By0By+ A i t − + ...mS x δS x − ( y1S x − a2 S Lα1Sβ ) δS x + ( y1S x − a2 S Lα1Sβ ) cwηπr 2 S L2 lS LΩStS F St2S F St2+α1 + Fy+ Aysin ( pt ) + Ω2e sin (Ω t );IxmS xmS xα1′ = α 2 ;Izcm S L S x St2′α 2 = − Ωβ2 +(a1 − a2 ) y1 + ...Ix2 I x Sβ+cm S L2 St24I x((a21(П.1.2))+ a22 )(1 + km ) − 2a1a2 (1 − km ) α1 + ...1622 2 −i0 + iAyii0Ay+a1 − − ...I x Sβ δS x − ( y1S x + a1S Lα1Sβ ) δS x + ( y1S x + a1S Lα1Sβ ) 222 2 +−iiii k S S S 00ByBy−a2 A L i t − + ...I x Sβ δS x − ( y1S x − a2 S Lα1Sβ ) δS x + ( y1S x − a2 S Lα1Sβ ) I S S2S S2+M x M t + Bx M t sin ( pt ) + Ω2 γ 1 − z cos (Ω t );I x SβI x Sβ I x k A S L Si2 St2β1′ = β2 ;Izcm S L S x St2′β2 = Ωα 2 +(−a1 + a2 ) x1 + ...Ix2 I x Sβcm S L2 St2+a12 + a22 )(1 + km ) − 2a1a2 (1 − km ) β1 − ...(4I x()2 2 a1k A S L Si2 St2 i0 + iAxi−i0Ax− − + ... δS x − ( x1S x − a1S L β1Sβ ) δS x + ( x1S x − a1S L β1Sβ ) I x Sβ22 a2k A S L Si2 St2 i0 + iBxi0 − iBx+ − + ... δS x − ( x1S x + a2 S L β1Sβ ) δS x + ( x1S x + a2 S L β1Sβ ) I x Sβ I S M St2S M St2+ By+M ysin ( pt ) + Ω2 γ 1 − z sin (Ω t ). I x I x SβI x SβЗададим в качестве независимых единиц размерности следующие масштабыS x = δ,SL = l ,St =m,cmSi =P,R(П.1.3)где l – длина ротора, P – электрическая мощность, R – сопротивление,соответствующие единицам измерения: м, с, А.