Главная » Просмотр файлов » Диссертация

Диссертация (1025659), страница 16

Файл №1025659 Диссертация (Разработка высокоточных алгоритмов коррекции навигационных систем летательных аппаратов) 16 страницаДиссертация (1025659) страница 162017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

4.9. Оценка угла отклонения ГСП реальной системы ИНС, полученная спомощью линейного нестационарного фильтра Калмана при различных 105Соответственно, на Рис. 4.7 представлено СКО ошибок оценивания.Рис. 4.10. СКО ошибок оценивания с помощью линейного нестационарногофильтра Калмана при различных На Рис. 4.10 обозначены: 1 – СКО ошибок оценивания посредствомлинейного нестационарного фильтра Калмана при   101 ; 2 – СКО ошибокоценивания посредством линейного нестационарного фильтра Калмана при  102 ; 3 – СКО ошибок оценивания посредством линейного нестационарногофильтра Калмана при   104 .Параметра  является средней частотой случайного изменения дрейфа, ипоэтому чем меньше значение  , т.е.

с большим периодом дрейф гороскопа неизменяется случайно, тем лучше качество оценивания.Теперь анализируем отношение степени наблюдаемости от измененияускорении силы тяжести (или высоты полета ЛА) в пространстве. В 1971 годуна ассамблее Международного союза геофизики и геодезии была рекомендована формула нормального значения ускорения силы тяжести [28,96]:g0  9.780318  (1  0.0053024  sin 2   0.0000059  sin 2 2 ),(4.9)илиg0  9.7803185  (1  0.005278895  sin 2   0.000023462  sin 4  ), (4.10)где  – широта местоположения.106Значение ускорения силы тяжести от изменения высоты имеет видg  g0  0.000003086  h,(4.11)где h – высота полета ЛА.Полученное значение приблизительно совпадает с ускорением свободного падения. При более точных расчетах необходимо использовать одну из моделей гравитационного поля Земли, дополнив ее поправками.В результате получены следующие графики.Рис.

4.11. Степень наблюдаемости угла отклонения при различных hРис. 4.12. Оценка угла отклонения ГСП реальной системы ИНС, полученная спомощью линейного нестационарного фильтра Калмана при различных h107Рис. 4.13. СКО ошибок оценивания с помощью линейного нестационарногофильтра Калмана при различных hНа Рис. 4.13 представлены: 1 – СКО ошибок оценивания посредствомлинейного нестационарного фильтра Калмана при h  1 м; 2 – СКО ошибокоценивания посредством линейного нестационарного фильтра Калмана приh  104 м;3–СКОошибокоцениванияпосредствомлинейногонестационарного фильтра Калмана при h  105 м; 4 – СКО ошибок оцениванияпосредством линейного нестационарного фильтра Калмана при h  106 м.Результаты показали, что чем выше ЛА летает, тем хуже способностьнаблюдения из-за меньших значений степень наблюдаемости.Таким образом, повышение точности (качества) алгоритма оцениваниявозможно осуществить путем повышения степени наблюдаемости с помощьюанализа характеристик наблюдаемости.Результаты моделирования алгоритма МГУА с комплексным критерием селекции.Коррекция навигационных систем в полете при отключении внешнегодатчика информации предусматривает реализацию алгоритма построения про-108гнозирующих моделей, в качестве которого использован алгоритм МГУА.

Дляупрощения реализации на борту ЛА разработан алгоритм в ансамбль критериевселекции которого дополнительно включены критерий простоты модели и численные критерии степени наблюдаемости и идентифицируемости.При проверке работоспособности предложенных методов прогнозирования принимается модель ошибок ИНС. Задача прогноза точности построениямоделей измерительных систем, в частности ИНС, является важной и актуальной. Если полученные модели ошибок ИНС обладают достаточной точностью,то они могут быть использованы для коррекции навигационной информации.Проводилось полунатурное моделирование по данным лабораторного эксперимента с использованием классического МГУА и разработанного алгоритмаМГУА с комплексным критерием селекции.Результаты моделирования представлены на Рис. 4.14 ‒ 4.15.Рис.

4.14. Прогноз угла отклонения ГСП реальной системы ИНС, полученные спомощью классического МГУА и алгоритма МГУА с комплексным критериемселекцииНа Рис. 4.16 представлены: 1 – ошибки реальной системы ИНС, полученные в процессе лабораторного эксперимента; 2 – прогноз угла отклонения ГСП109посредством классического МГУА; 3 – прогноз угла отклонения ГСПпосредством алгоритма МГУА с комплексным критерием селекции.Рис. 4.15. СКО ошибок прогнозирования с помощью классического МГУА иалгоритма МГУА с комплексным критерием селекцииНа Рис.

4.15 представлены: 1 – СКО ошибок прогнозированияпосредством классического МГУА; 2 – СКО ошибок прогнозированияпосредством алгоритма МГУА с комплексным критерием селекции.По Рис. 4.15 видно, что СКО ошибок прогнозирования с помощью классического МГУА равно 1,3  105 рад, а алгоритма МГУА с комплексным критерием селекции равно 0,6  105 рад. Алгоритм МГУА с комплексным критериемселекции работает с высокой точностью прогнозирования.

Кроме этого, резервирование трендов позволяет снизить влияние эффекта старения измерений иэффекта инбридинга на точность построения модели прогнозы.Коррекция навигационных систем в полете при отключении внешнегодатчика информации (как показано на Рис. 1.3) предусматривает реализациюалгоритма построения прогнозирующих моделей, в качестве которого использован алгоритм МГУА с комплексным критерием селекции.Таким образом, применение алгоритма МГУА с комплексным критериемселекции дает возможность сформировать модели в полете, использование ко-110торых в навигационном комплексе для прогнозирования погрешностей ИНСпозволяет эффективно осуществлять коррекцию навигационной информации.Результаты моделирования модифицированного нелинейного фильтра Калмана.Для того, чтобы оценивать эффективность модифицированного нелинейного фильтра Калмана, использованы реальные данные лабораторных испытаний с серийными навигационными системами Ц-060.

В качестве модели оцениваемого процесса использованы нестационарные нелинейные уравнения ошибок ИНС.Как показано на Рис. 3.5, эталонная модель строится в процессе функционирования ИНС алгоритмом МГУА с комплексным критерием селекции. Вслучае, когда модель в фильтре Калмана становится неадекватной реальномупроцессу изменения погрешностей ИНС, проводится ее замена на модель, полученную на основе последних измерений алгоритмом МГУА. Вместо МГУАможно использовать ГА, и схема алгоритма коррекции остается без изменений.При проведении моделирования разработанной модификации нелинейного фильтра Калмана МГУА с комплексным критерием селекции или ГА использован для нахождения матрицы Fk ,k 1  xˆ k  , являющейся аналогом Φk ,k 1  xˆ k в (3.12).Для вычисления модели в ГА каждая хромосома представляет собой матрицу размером 1  n , n  6 .

Оператор скрещивания как показано на Рис. 4.16выполняется следующим образом.a1 a2 a3 a4 a5 a6c1 c2 c3 c4 c5 c6Скрещиваниеb1 b2 b3 b4 b5 b6d1 d2 d3 d4 d5 d6ci  xi   ( yi  xi ) , di  xi   ( yi  xi ) .Здесь xi  min(ai , bi ) ; yi  max(ai , bi ) ;  ,   (0,1) ;111ai , bi – гены родители; ci , di – гены потомок.Рис. 4.16. Функциональная схема процедуры скрещивания генетического алгоритмаОператор мутации выполняется следующим образом:bi  c   (d  c) .(4.12)Здесь c, d – левое и правое крайние значения генов   (0,1) .Функция приспособленности имеет вид [63]f П  k1 (V  VГА )2  k2 (Ф  ФГА )2  k3 (   ГА )2 .(4.13)Значения k1 , k2 , k3 выбраны из практических соображений с учетом соотношений номиналов значений V ,Ф,  : k1  104 , k2  108 , k3  1010 .Результаты моделирования нелинейного фильтра Калмана и его модификации представлены на Рис.

4.17 – 4.18.Рис. 4.17. Оценка угла отклонения ГСП реальной системы ИНС, полученные спомощью нелинейного фильтра Калмана и его модификацииНа Рис. 4.17 представлены: лазурная пунктирная линия – угол отклоненияГСП, полученный в процессе лабораторного эксперимента; синяя сплошная линия – оценка угла отклонения ГСП реальной системы ИНС, полученная с по-112мощью классического нелинейного фильтра Калмана; красная ломаная линия –оценка угла отклонения ГСП реальной системы ИНС, полученная посредствоммодифицированного нелинейного фильтра Калмана.Рис.

4.18. СКО ошибок оценивания с помощью нелинейного фильтра Калмана иего модификацииНа Рис. 4.18 представлены: 1 – СКО ошибок оценивания посредствомкласического нелинейного фильтра Калмана; 2 – СКО ошибок оцениванияпосредством модифицированного нелинейного фильтра Калмана.По серии экспериментов СКО ошибок оценивания угла отклонения ГСПна интервале времени 140 с в среднем составляет при помощи нелинейногофильтра Калмана 2,5 106 рад , а при помощи модифицированного нелинейного фильтра Калмана 1,1 106 рад .При оценивании непосредственно неизмеряемых погрешностей ИНС,например скоростей дрейфов ГСП, для определения точности алгоритмов используется специальная методика [44]. В соответствии с этой методикой оценки скорости дрейфа ГСП ИНС используются для вычисления местоположенияна основе математической модели погрешностей ИНС.

Ошибки ИНС в определении местоположения, полученные в лабораторном эксперименте, необходимосравнить с расчетными ошибками в определении широты и долготы, которые113рассчитываются при помощи полученных оценок дрейфа ГСП. Для определения широты и долготы воспользуемся известными формулами  y,RxR cos (4.14),(4.15)где  – широта местоположения; R – радиус Земли;  ,  – погрешностьопределения широты и долготы ЛА;  x ,  y – оценки северной и восточной составляющих ошибок в определении пути реальной ИНС.Расчетные значения ошибок по широте и долготе сравниваются с ошибками реальной ИНС в определении местоположения, полученными при проведении лабораторного эксперимента.

В соответствие с результатами серии лабораторных экспериментов можно сделать заключение – фильтр Калмана, модифицированный с помощью МГУА с комплексным критерием селекции или ГА,продемонстрировал наиболее высокую точность. При использовании классического нелинейного фильтра Калмана точность определения широты местностив среднем составляет 0,05 угловых минут за один час полета. Точность определения широты местности с применением модифицированного нелинейногофильтра Калмана составила в среднем 0,02 угловых минут за один час полетаЛА.В условиях реальной эксплуатации ЛА можно предположить, что преимущество модифицированных фильтров Калмана будет проявляться ещебольше, так как степень адекватности математической модели, используемой вклассическом нелинейном фильтре Калмана, существенно снижается, особеннопри интенсивном маневрировании ЛА.114Выводы по Главе 4В четвертой главе:– Эффективность предложенных алгоритмов проверена с использованиемполунатурного моделирования с реальной ИНС, установленной на неподвижном основании;– Приведены результаты моделирования: нестационарного фильтра Калмана, в котором использована модель с повышенными характеристикаминаблюдаемости и идентифицируемости, алгоритма МГУА с комплексным критерием селекции, модифицированного нелинейного фильтра Калмана;– Представлены результаты анализа точностных характеристик разработанных алгоритмов.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее