Диссертация (1025465), страница 22
Текст из файла (страница 22)
Казань. 1988. С. 32–34.14898. Mardilovich P.P., Govyadinov A.N., Paterson R. Preparation and properties ofnew and modified anodic alumina membranes // Membrane Preparation. Proceed.Euromembrane 92. Paris. 1992. V. 6, No. 22. P. 33–38.99. Влияние условий приготовления и термообработки на фазовый состав Al2O3в алюмопалладиевых катализаторов / Т.С. Петкевич [и др.] // Кинетика икатализ.1993. Т. 34, № 2. С. 325–328.100. Яковлева Н.М., Яковлев А.Н., Чупахина Е.А. Термически индуцированныефазовыепревращениявнанопористыхоксидахалюминия// Конденсированные среды и межфазные границы.
2006. Т. 8. С. 69–77.101. Assessment of the thermal stability of anodic alumina membranes at hightemperatures / L. Fernández-Romero [et al.] // Mater. Chem. Phys. 2008. V. 111.P. 542–547.102. Ono S., Masuko N. Evaluation of pore diameter of anodic porous films formed onaluminum // Surface and Coatings Technology. 2003. V. 169 –170. P. 139–142.103. Fabrication and Characterization of Single Phase α-Alumina Membranes withTunable Pore Diameters / T.
Masuda [et al.] // Materials. 2015. V. 8. P. 1350–1368.104. Choudhari K.S., Sudheendra P., Udayashankar N.K. Fabrication and hightemperature structural characterization study of porous anodic aluminamembranes // J. Porous Mat. 2012. V. 19. P.
1053–1062.105. A tracer study of porous anodic alumina / P. Skeldon [et al.] // Electrochemicaland Solid-State Letters. 2006. V. 9, № 11. P. B47–B51.106. A flow model of porous anodic film growth on aluminium / S.J. Garcia-Vergara[et al.] // Electrochimica Acta. 2006. V. 52, № 2. P. 681–687.107. Houser J.E., Hebert K.R. The role of viscous flow of oxide in the growth of selfordered porous anodic alumina films. // Nature Materials.
2009. V. 8, № 5.P. 415–420.108. Росляков И.В. Упорядочение структуры пористых пленок анодного оксидаалюминия: дис. … канд. хим. наук. Москва. 2015. 151 с.149109. Morphological instability leading to formation of porous anodic oxide films / K.R.Hebert [et al.] // Nature Materials. 2012.
Vol. 11. P. 162–166.110. Vorobyova A. I., Outkina E. A., Khodin A. A. Self-Organized GrowthMechanism for Porous Aluminum Anodic Oxide // Russian Microelectronics.2007. V. 36. P. 384–391.111. Воробьева А.И., Уткина Е.А., Ходин А.А. Исследование механизмасамоорганизацииприформированиисамоупорядоченнойструктурыпористого анодного оксида алюминия // Микроэлектроника. 2007.
Т. 36,№ 6. С. 437–445.112. Фишгойт Л. А., Мешков Л. Л. Коррозионно - электрохимические свойстваинтерметаллидов системы титан – алюминий // Вестн. моск. ун-та.Cер. 2.Химия. 1999. № 6. С. 369–372.113. Камкин А.Н., Фишгойт Л.А., Давыдов А.Д. Исследование состава иструктуры анодных оксидных пленок на сплавах титан-алюминий методамидифракции отраженных быстрых электронов, спектроскопии обратногорезерфордовского рассеяния и масс-спектроскопии вторичных нейтральныхчастиц // Электрохимия. 2003.
Т. 39, № 6. С. 738–743.114. Titanium nanostructures for biomedical applications / M. Kulkarni [et al.]// Nanotechnology. 2015. V. 26. P. 1–18.115. Bai J., Zhou B. Titanium Dioxide Nanomaterials for Sensor Applications// Chem. Rev. 2014. V. 114. P. 10131−10176.116. Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as afunction of their annealing temperature / A. Mazare [et al.] // Corrosion Science.2016. V.
103. P. 215–222.117. Topographical study of TiO2 nanostructure surface for photocatalytic hydrogenproduction / G. Cha [et al.] // Electrochimica Acta. 2015. V. 179. P. 423–430.118. Review of titania nanotubes: Fabrication and cellular response / A.W. Tan [et al.]// Ceramics International. 2012. V. 38. P. 4421–4435.119. Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate/ S.H.
Kang [et al.] // J. Ind. Eng. Chem. 2008. V. 14. P. 52–59.150120. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length/ M. Paulose [et al.] // J. Phys. Chem. B. 2006. V. 110, № 33. P. 16179–16184.121. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes/ J.M. Macak [et al.] // J. of Electroanalytical Chem. 2008. V. 621.
P. 254–266.122. Effect of electric field strength on the length of anodized titania nanotube arrays/ L. Sun [et al.] // Journal of Electroanalytical Chemistry. 2009. V. 637. P. 6–12.123. Formation behavior of anodic TiO2 nanotubes in fluoride containing electrolytes/ B.-G. Lee [et al.] // Trans. Nonferrous Met. Soc. China. 2009. V.
19. P. 842–845.124. A new benchmark for TiO2 nanotube array growth by anodization / H.E.Prakasam [et al.] // J. Phys Chem C. 2007. V. 111. P. 7235–7241.125. AbdElmoula M. Optical, electrical and catalytic properties of titania nanotubes:diss. … Dr. Philosophy. Northeastern University Boston.
2011. 275 p.126. TiO2 nanotubes: Self-organized electrochemical formation, properties andapplications / J.M. Macak [et al.] // Solid State and Materials Science. 2007.V. 11. P. 3–18.127. Anodization Fabrication of Highly Ordered TiO2 Nanotubes / S. Li [et al.]// J. Phys. Chem. C. 2009. V. 113. P. 12759–12765.128. Fabrication of complete titania nanoporous structures via electrochemicalanodization of Ti / G.
Ali [et al.] // Nanoscale Research Letters. 2011. V. 6. P. 1–10.129. Su Z., Zhou W. Porous Anodic Metal // Science foundation in China. 2008.V. 16, № 1. P. 36−53.130. Macak J. M. Growth of anodic self-organized titanium dioxide nanotube layers:diss. … Dr.-Ing.
University Erlangen-Nurnberg. Erlangen. 2008. 150 p.131. Anodic TiO2 nanotube layers: Why does self-organized growth occur—A mini review/ X. Zhou [et al.] // Electrochemistry Communications. 2014. V. 46 P. 157–162.132. Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method toextend nanotube diameter / Y.
Zhang [et al.] // Electrochimica Acta. 2015.V. 160. P. 33–42.151133. Ideally ordered porous TiO2 prepared by anodization of pretextured Ti bynanoimprinting process / T. Kondo [et al.] // Electrochemistry Communications.2015. V. 50. P. 73–76.134. Kapusta-Kołodziej J., Zaraska L., Sulka G.D. Nanoporous anodic titania observedat the bottom side of the oxide layer // Applied Surface Science. 2014. V. 315.P. 268–273.135. Paramasivam I. Self-Organized TiO2 Nanotubular Arrays and their Modifcationsfor Photocatalytic Applications: diss.
… Dr.-Ing. University Erlangen-Nurnberg.Erlangen. 2012. 158 p.136. Albu S. P. Morphology and Growth of Titania Nanotubes. Nanostructuring andApplications: diss. … Dr.-Ing. University Erlangen-Nurnberg. Erlangen. 2012. 191 p.137. A review of growth mechanism, structure and crystallinity of anodized TiO2nanotubes / D.
Regonini [et al.] // Materials Science and Engineering R. 2013.V. 74. P. 377–406.138. Munirathina B., Neelakantan L. Titania nanotubes from weak organic acidelectrolyte: Fabrication, characterization and oxide film properties // MaterialsScience and Engineering C. 2015. V. 49. P. 567–578.139. Influence of anodization parameters on morphology of TiO2 nanostructuredsurfaces / M.
Kulkarni [et al.] // Adv. Mater. Lett. 2016. V. 7(1). P. 23–28.140. A Review of Photocatalysis using Self-organized TiO2 Nanotubes and OtherOrdered Oxide Nanostructures / I. Paramasivam [et al.] // Small. 2012. V. 8.№ 20. P. 3073–3103.141. Titanium oxide nanotube arrays prepared by anodic oxidation / D. Gong [et al.]// J. Mater. Res. 2001. V. 16, № 12.
P. 3331–3334.142. Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an OrganicElectrolyte / C. Ruan [et al.] // J. Phys. Chem. B. 2005. V. 109. P. 15754–15759.143. Highly Ordered TiO2 Nanotube Arrays with Controllable Length forPhotoelectrocatalytic Degradation of Phenol / Z. Liu [et al.] // J. Phys. Chem. C.2008. V.
112. P. 253–259.152144. Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned TitaniumOxide Nanopores / V. Vega [et al.] // Nanoscale Res Lett. 2007. V. 2. P. 355–363.145. Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays / V. Vega[et al.] // Journal of Non-Crystalline Solids. 2008. V. 354. P. 5233–5235.146. Temperature influence on the anodic growth of self-aligned Titanium dioxidenanotube arrays / V.M. Prida [et al.] //Journal of Magnetism and MagneticMaterials.
2007. V. 316. P.110–113.147. Voltage Oscillations and Morphology during the Galvanostatic Formation ofSelf-Organized TiO2 Nanotubes / L.V. Taveira [et al.] // J. Electrochem. Soc.2006. V. 153. P. B137–B143.148. Beranek R, Hildebrand H., Schmuki P. Self-Organized Porous Titanium OxidePrepared in H2SO4/HF Electrolytes // Electrochemical and Solid-State Letters.2003. V. 6, №3.
P. B12-B14.149. Enhancement and limits of the photoelectrochemical response from anodic TiO2nanotubes / R. Beranek [et al.] // Appl. Phys. Lett. 2005. V. 87. P. 243114 (1–3).150. The formation mechanism of titania nanotube arrays in hydrofluoric acidelectrolyte / J. Bai [et al.] // J. Mater. Sci. 2008. V.
43. P. 1880–1884.151. The effect of electrolyte composition on the fabrication of self-organized titaniumoxide nanotube arrays by anodic oxidation / Q. Cai [et al.] // J. Mater. Res. 2005.V. 20. P. 230–236.152. Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed inNH4F/(NH4)2SO4 Electrolytes / L.V. Taveira [et al.] // Journal of TheElectrochemical Society.














