Диссертация (1025465), страница 23
Текст из файла (страница 23)
2005. V. 152, № 10. P. B405–B410.153. Titanium oxide nanotubes prepared in phosphate electrolytes / A. Ghicov [et al.]// Electrochem. Commun. 2005. V. 7. P. 505–509.154. On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si / J.M.Macak [et al.] // Chemical Physics Lett. 2006. V. 428. P.
421–425.155. Structure of nanotubular titanium oxide templates prepared by electrochemicalanodization in H2SO4/HF solutions / M. Bestetti [et al.] // Thin Solid Films. 2007.V. 515. P. 5253–5258.153156. Chen C.-C., Chen J.-H., Chao C.-G. Electrochemical characteristics of surface oftitanium formed by electrolytic polishing and anodizing // Journal of MaterialsScience. 2005. V. 40. P. 4053–4059.157.
TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation/ A. Ghicov [et al.] // Chem. Phys. Lett. 2006. V. 419. P. 426–429.158. Efficient solar energy conversion using TiO2 nanotubes produced by rapidbreakdown anodization – a comparison / R. Hahn [et al.] // Phys. stat. sol. 2007.V. 1, № 4.
P. 135–137.159. Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation usingmodified glycerol-based electrolytes / Y. Yin [et al.] // J. Am. Ceram. Soc. 2007.V. 90. P. 2384–2389.160. Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxideelectrolytes / S. Yoriya [et al.] // J. Phys. Chem. C. 2007. V. 111. P. 13770–13776.161. Cation effect on the electrochemical formation of very high aspect ratio TiO2nanotube arrays in formamide–water mixtures / K. Shankar [et al.] // J. Phys.Chem. C.
2007. V. 111. P. 21–26.162. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol reddiffusion / M. Paulose [et al.] // J. Phys. Chem. C. 2007. V. 111. P. 14992–14997.163. Macak J.M., Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubesin viscous electrolytes // Electrochim. Acta. 2006. V.
52. P. 1258–1264.164. The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer betweentube-walls / S. Berger [et al.] // Surface Science. 2011. V. 605. P. L57–L60.165. Ultrahigh-Aspect-Ratio Titania Nanotubes / C. Richter [et al.] // Adv. Mater.2007. V. 19. P. 946–948.166. Titania nanotubes prepared by anodization in fluorine-free acids / C.
Richter [etal.] // J. Mater. Res. 2007. V. 22. P. 1624–1631.167. Through-Hole, Self-Ordered Nanoporous Oxide Layers on Titanium, Niobiumand Titanium–Niobium Alloys in Aqueous and Organic Nitrate Electrolytes / R.Kirchgeorg [et al.] // ChemistryOpen. 2012. V. 1. P. 21–25.154168. Nitrates: A new class of electrolytes for the rapid anodic growth of self-orderedoxide nanopore layers on Ti and Ta / W. Wei [et al.] // Phys. Status Solidi RRL.2011. P. 1–3.169. Allam N.K., Grimes C.A. Formation of vertically oriented TiO2 nanotube arraysusing a fluoride free HCl aqueous electrolyte // Journal of Physical Chemistry C.2007.
V. 111. P. 13028–13032.170. Allam N.K., Shankar K., Grimes C.A. Photoelectrochemical and waterphotoelectrolysis properties of ordered TiO2 nanotubes fabricated by Tianodization in fluoride-free HCl electrolytes // Journal of Materials Chemistry.2008. V. 18. P.
2341–2348.171. Titanium Dioxide Nanotubes in Chloride Based Electrolyte: An Alternative toFluoride Based Electrolyte / S.W. Ng [et al.] // Sains Malaysiana. 2014. V. 43 (6).P. 947–951.172. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapidbreakdown anodization / Y.L. Cheong [et al.] // J Porous Mater. 2015. V. 22,Iss. 6. P.1437–1444.173.
Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activityunder various light sources / Y.-K. Lai [et al.] // Journal of Hazardous Materials.2010. V. 184. P. 855–863.174. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation oforganics and drug release / F. Schmidt-Stein [et al.] // Electrochem. Comm. 2009.V. 11.
P. 2077–2080.175. Biomimetic growth of apatite on titania nanotube arrays fabricated by titaniumanodization in NH4F/H2SO4 electrolyte / T. Tian [et al.] // Mater. Sci. (Poland).2008. V. 26. P. 287–294.176. ComparisonofphotoelectrochemicalpropertiesofTiO2-nanotube-arrayphotoanode prepared by anodization in different electrolyte / Y. Liu [et al.]// Environ. Chem. Lett. 2009. V.
7. P. 363–368.155177. Liang H., Li X. Effects of structure of anodic TiO2 nanotube arrays onphotocatalytic activity for the degradation of 2,3-dichlorophenol in aqueoussolution // J. Hazard. Mater. 2009. V. 162. P. 1415–1422.178. TiO2 nanotube layers with metallic nanoparticles / H. Tsuchiya [et al.] // J. Phys.Conf. 2009.V. 165. P. 1–6.179. Self-organized TiO2 nanotubes in mixed organic–inorganic electrolytes and theirphotoelectrochemical performance / Y. Lai [et al.] // Electrochim.
Acta. 2009.V. 54. P. 6536–6542.180. Sreekantan S., Hazan R., Lockman Z. Photoactivity of anatase–rutile TiO2 nanotubesformed by anodization method // Thin Solid Films. 2009. V. 518. P. 16–21.181. Li Y., Yu X., Yang Q. Fabrication of TiO2 Nanotube Thin Films and Their GasSensing Properties // J. Sensors. 2009. V. 2009. P. [1–19].182. Characterization of structure and luminescence of titania nanotubes / M. Enachi[et al.] // Moldavian J. Phys.
Sci. 2009. V .8. P. 214–220.183. Smooth anodic TiO2 nanotubes: annealing and structure / J.M. Macak [et al.]// Phys. stat. sol. (a). 2006. V. 203, № 10. P. R67–R69.184. Annealing effects on the photoresponse of TiO2 nanotubes / A. Ghicov [et al.]// Рhys. Stat. Sol. (a). 2006. V. 203. P. R28–R30.185. Crystallization and high-temperature structural stability of titanium oxidenanotube arrays / О.K. Varghese [et al.] // J. Mater. Res. 2003.
V. 18. P. 156–165.186. Hydrogen sensing using titania nanotubes / О.K. Varghese [et al.] // Sensor.Actuator. B Chem. 2003. V. 93. P. 338–344.187. Extreme changes in the electrical resistance of titania nanotubes with hydrogenexposure / О.K. Varghese [et al.] // Adv. Mater. 2003. V 15. № 7-8. P. 624–627.188.
Zhang H., Banfield J.F. Kinetics of Crystallization and Crystal Growth ofNanocrystalline Anatase in Nanometer-Sized Amorphous Titania // Chem. Mater.2002. V. 14. P. 4145–4154.189. Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications// Angew. Chem. Int. Ed. 2011. V. 50. P. 2904–2939.156190. Alivov Y., Fan Z.Y. A TiO2 nanostructure transformation: from orderednanotubes to nanoparticles // Nanotechnology. 2009. V. 20. P.
[1–6].191. Alivov Y., Fan Z.Y. A Method for Fabrication of Pyramid-Shaped TiO2Nanoparticles with a High {001} Facet Percentage // J. Phys. Chem. C. 2009.V. 113. P. 12954–12957.192. Heat Treatment Effect on Crystalline Structure and Photoelectrochemical Propertiesof Anodic TiO2 Nanotube Arrays Formed in Ethylene Glycol and Glycerol BasedElectrolytes / M. Jarosz [et al.] // J. Phys.
Chem. C. 2015. V. 119 (42).Р. 24182–24191.193. High Purity Anatase TiO2 Nanocrystals: Near Room-Temperature Synthesis,Grain Growth Kinetics, and Surface Hydration Chemistry / G. Li [et al.] // J. Am.Chem. Soc. 2005. V. 127 (24). P. 8659−8666.194. Effects of F− Doping on the Photocatalytic Activity and Microstructures ofNanocrystalline TiO2 Powders / J.C. Yu [et al.] // Chem. Mater.
2002. V. 14.P. 3808−3816.195. Effect of heat treatment on morphology, crystalline structure and photocatalysisproperties of TiO2 nanotubes on Ti substrate and freestanding membrane / D.Fang [et al.] // Applied Surface Science. 2011. V. 257. P. 6451−6461.196. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formedby anodization in NH4F solutions / J.M. Macak [et al.] // Journal of BiomedicalMaterials Research Part A.
2008. V. 75A. № 4. P. 928–933.197. Comparing performance of nanoarchitectures fabricated by Ti6Al7Nb anodizingin two kinds of electrolytes / M. Mîndroiu [et al.] // Electrochimica Acta.2010.V.56, № 1. P. 193–202.198. Kaczmarek A., Klekiel T., Krasicka-Cydzik E. Fluoride concentration effect onthe anodic growth of self-aligned oxide nanotube array on Ti6Al7Nballoy//Surface and Interface analysis. 2010.
V. 42, № 6–7. P. 510–514.199. Ti6Al7Nb surface modification by anodization in electrolytes containing HF/ E.-D. Stoica [et al.] // U.P.B. Sci. Bull., Series B. 2012. V. 74, Iss. 2. P. 277–288.157200. Fabrication, characterization and biocompatibility of TiO2 nanotubes viaanodization of Ti6Al7Nb / G.-Z.
Li [et al.] // Composite Interfaces. 2016. V. 23 (3).P. 223–230.201. Нанопористые анодно-оксидные пленки на порошковом сплаве Ti-Al / К.В.Степанова [и др.] // Уч. зап. ПетрГУ. 2015. Т. 147, № 2. С. 81–86.202. Влияние отжига на структуру нанопористых оксидных пленок наповерхности порошкового сплава титан-алюминий / К.В. Степанова [и др.]// Поверхность. Рентгеновские, синхротронные и нейтронные исследования.2016.
№ 9. С. 54–62.203. Porous anodic film formation on Al–Ti alloys in sulphuric acid / V.C. Nettikaden[et al.] // Corrosion Science. 2012. V. 57. P. 49–55.204. Lazarouk S. K., Leshok A. A. Nanoporous anodic oxide on aluminum-titaniumalloys // Physics, chemistry and applications of nanostructures. 2003. P .249–252.205. TiO2-Nb2O5 Nanotubes with Electrochemically Tunable Morphologies / A.Ghicov [et al.] // Angew. Chem.
Int. Ed. 2006. V. 45. P. 6993–6996.206. Ghicov A., Yamamoto M., Schmuki P. Lattice widening in Nb-doped TiO2nanotubes: Efficient ion intercalation and swift electrochromic contrast // Angew.Chem. Int. Ed. 2008. V. 47. P. 7934–7937.207. Yasuda K., Schmuki P. Control of morphology and composition of self-organizedzirconiumtitanatenanotubesformedin(NH4)2SO4/NH4Felectrolytes// Electrochimica Acta.
2007. V. 52. P. 4053–4061.208. Yasuda K., Schmuki P. Formation of Self-Organized Zirconium Titanate NanotubeLayers by Alloy Anodization // Adv. Mater. 2007. V. 19. P. 1757–1760.209. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhancedelectrochromic properties / Y. Nah [et al.] // J. Am. Chem.
Soc. 2008. V. 130.P. 16154–16155.210. Self-organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties/ N. K. Shrestha [et al.] // Chem. Commun. 2009. P. 2008–2010.158211. Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition,microstructure and self-organization on two-size scales / H.













