Часть1(Физические основы механики.Колебания) (1018205), страница 8
Текст из файла (страница 8)
При изучении движения тел (обычно элементарных частиц, например, электронов, протонов) с относительно большими скоростями взгляды на массу тела изменились. Так, например, в конце XIX века изучалось движение электронов (катодных лучей) в магнитных и электрических полях. Электрон (заряд е, масса т), пройдя разность потенциалов U между катодом и анодом вакуумной трубки, приобретал кинетическую энергию и скорость
, которая должна быть пропорциональной корню из напряжения. Это наблюдалось только при относительно малых напряжениях U, при которых v/c << 1. С дальнейшим ростом напряжения U скорость электронов v увеличивалась медленнее, не пропорционально
, и асимптотически стремилась к скорости света с. Этот факт привел в 1898 году немецкого ученого В. Кауфмана к заключению, что с ростом скорости v электрона увеличивается его масса.
В миллионах учебников, во множестве статей, монографий на протяжении почти ста лет, вплоть до наших дней, утверждалось, что масса тела возрастает с ростом его скорости, и приводились соответствующие формулы.
В последние годы ряд ученых физиков-теоретиков (см., например, 2 статьи: Л. Б. Окунь, Успехи физических наук, т. 158, №3, 1989 г., стр. 511-530; т. 170, №12, 2000 г., стр. 1366-1371) выступили с критикой ложных представлений о теории относительности, о массе тел.
С точки зрения теории относительности масса тела т характеризует его энергию покоя , согласно соотношению Эйнштейна:
То есть энергия покоя тела пропорциональна его массе. Именно утверждение о том, что в инертной покоящейся материи таятся огромные (благодаря квадрату скорости света ) запасы энергии, сделанное Эйнштейном в 1905 г., является главным практическим следствием теории относительности. На соотношении (17) основана вся ядерная энергетика и вся ядерная военная техника (а также и вся обычная энергетика).
5.2 Энергия, импульс в релятивистской механике
Если тело движется со скоростью v относительно инерциальной системы отсчета (ИСО) K, то помимо энергии покоя , оно обладает кинетической энергией
и полная энергия его
.
Преобразования Лоренца для энергии Е и импульса р тела имеют вид:
Если к покоящемуся телу в системе отсчета применить преобразования Лоренца (18) (при этом следует учесть, что
), то получается связь энергии и импульса с его скоростью:
Из (19), (20) следует важное соотношение между энергией Е, импульсом и массой т тела:
. (22)
Из (22) следует, что масса тела не меняется при переходе от одной ИСО к другой ИСО. В этом легко убедиться, если использовать для Е и преобразования Лоренца (18).
Таким образом, в отличие от Е и , которые являются компонентами 4-мерного вектора, масса т является лоренцевым инвариантом, и, следовательно, она не зависит от скорости тела. Поэтому не следует употреблять широко распространенные выражения «релятивистская масса
», «масса покоя т0 ». Следует говорить о массе т, которая для обычных тел в теории относительности и ньютоновской механике одна и та же, что в обеих теориях масса т не зависит от системы отсчета, т.е. масса – инвариантна.
Заметим, что среди элементарных частиц есть такие частицы, масса которых равна нулю, например, фотоны (кванты электромагнитного излучения, в узком смысле – частицы света), глюоны (переносчики взаимодействия между кварками), возможно, некоторые типы нейтрино.
Для таких безмассовых частиц из (22) и (21) следует, что
В теории относительности, как и в ньютоновской механике, выполняются законы сохранения импульса, энергии.
В теории относительности энергия и импульс аддитивны, но закон аддитивности массы не выполняется. Покажем это.
Суммарная энергия Е двух свободных тел равна сумме их энергий, то есть . Аналогично,
. С учетом этого из (22) находим:
то есть суммарная масса зависит от угла между импульсами и
. Так, масса системы двух фотонов (безмассовых частиц) с энергией Е у каждого, равна
, если они летят в противоположные стороны и равна нулю, если они летят в одну сторону. Этот пример иллюстрирует, что в теории относительности массы не аддитивны. Следует отметить, что понимание природы массы частиц остается одной из важнейших проблем современной физики.
5.3 Основное уравнение релятивистской динамики
Согласно (20), релятивистский импульс , при этом обе формулы справедливы для «тяжелых», т.е. имеющих не нулевую массу частиц. Для безмассовых частиц (т = 0)
.
Основное уравнение релятивистской динамики имеет вид или, более подробно:
В силу однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса:
релятивистский импульс замкнутой системы сохраняется.
5.4 Кинетическая энергия релятивистской частицы
Согласно (19), полная энергия тела (частицы) в релятивистской механике , она складывается из энергии покоя тела
[см. (17)] и кинетической энергии
, т.е.
, отсюда,
Из (26) следует, что при v/c << 1 и
, т.е. получаем выражение кинетической энергии частицы, которое используется в ньютоновской механике.
Заметим, что энергия покоящегося тела в ньютоновской механике , а в релятивистской
.
В силу однородности времени в релятивистской механике, как и в ньютоновской механике, выполняется закон сохранения энергии:
полная энергия замкнутой системы сохраняется.
6. Заключение
Итак, длительность события (времени), размеры тела не являются абсолютными величинами, а зависят от скорости тела, т. е. являются относительными. Кроме того масса и энергия оказались связанными друг с другом, хотя они являются качественно различными свойствами материи. Основной вывод теории относительности сводится к тому, что пространство и время взаимосвязаны и образуют единую форму существования материи: пространство-время. Наиболее общая теория пространства-времени называется общей теорией относительности или теорией тяготения, т.к. согласно этой теории свойства пространства-времени в данной области определяются действующими в ней полями тяготения.
В изложенной выше теории действием тяготения Эйнштейн пренебрег. Поэтому она называется частной (или специальной) теорией относительности, т. к. она является частным случаем общей теории относительности, завершенной Эйнштейном позже, в 1915 г.
Л Е К Ц И И № № 1 1 – 1 2 . К О Л Е Б А Т Е Л Ь Н Ы Е П Р О Ц Е С С Ы
В природе и технике часто происходят процессы, повторяющиеся во времени. Такие процессы называются колебаниями.
Качания маятника часов, волны на воде, переменный электрический ток, свет, звук, и т.д. являются примерами колебаний различных физических величин. Все эти процессы качественно отличаются друг от друга, но оказывается, что количественные закономерности (т. е. математические выражения) этих процессов имеют много общего. Именно это обстоятельство придает учению о колебаниях его важное значение. Изучая на этих двух лекциях механические колебания, мы получим также знания - в других областях, например, из области электромагнитных колебаний, радиотехники, оптики, и др.
1. Гармонические колебания
И
Рис. 1
зучим простейшую колебательную систему – тело массы m, прикрепленное к пружине и скользящее без трения по горизонтальному столу (рис. 1).Рассмотрим движение этого грузика под действием однократно приложенной силы. Отклонение обозначим через х, и предположим, что имеем дело с абсолютно упругой пружиной. В этом случае пружина действует на груз с упругой силой F, пропорциональной смещению х и направленной в сторону обратную смещению, т. e. F= - kx, где k - коэффициент пропорциональности, называемый также жесткостью пружины. Знак "минус" означает, что сила упругости противодействует смещению.
В физике встречаются силы иного происхождения, чем упругие, которые обнаруживают такую же закономерность, т. е. оказываются равными -kx, где k – постоянная положительная величина.
Силы такого вида, независимо от их природы, принято называть квазиупругими.
Под действием этой однократно приложенной силы грузик начнет совершать колебания.
Механическая система, совершающая колебания около положения равновесия, называется классическим осциллятором.
Промежуток времени, по истечению которого движение повторится, называется периодом колебания и обозначается Т, [Т] = с.
Частота колебаний равна числу полных колебаний за 1 с: . Частота измеряется в Гц. 1 Гц - это одно колебание за 1 с. В технике частоты измеряются также в килогерцах (1 кГц = 103 Гц), мегагерцах (1 Мгц = 106 Гц), гигагерцах (1ГГц = 109 Гц ).
Выведем уравнение колебаний гармонического осциллятора.
Напишем 2-й закон Ньютона: F = та, где F = -kx, а ускорение . В итоге получаем
или