Часть1(Физические основы механики.Колебания) (1018205), страница 5
Текст из файла (страница 5)
При абсолютно неупругом ударе выполняется только закон сохранения суммарного импульса тел: , откуда,
Кинетическая же энергия, которой обладала система до удара, после соударения уменьшается или стремится к нулю. Изменение кинетической энергии:
5.3.2. Абсолютно упругий удар
Это такой удар, при котором полная механическая энергия тел сохраняется. Сначала кинетическая энергия частично или полностью переходит в потенциальную энергию упругой деформации. Затем тела возвращаются к
первоначальной форме, отталкиваясь друг от друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую и тела разлетаются со скоростями, которые определяются исходя их законов сохранения суммарного импульса и суммарной энергии тел.
Обозначим массы шаров m1 и m2, скорости шаров до удара и
, скорости шаров после удара
и
и напишем уравнения сохранения импульса и энергии:
Решая совместно эти два уравнения, найдем скорости шаров после абсолютно упругого удара:
Чтобы осуществить расчеты, нужно спроектировать все векторы на ось х. Сделаем это, например, для случая а) на рис. 1:
Если ответ получается положительным, то это означает, что шар после соударения движется вправо, если – отрицательный, то шар движется влево.
5.4. Общефизический закон сохранения энергии
Классическая механика учитывает только кинетическую энергию макроскопического движения тел и их макроскопических частей, а также их потенциальную энергию. Но она полностью отвлекается от внутреннего атомистического строения вещества. При ударе, трении и аналогичных процессах кинетическая энергия видимого движения тел не пропадает. Она только переходит в кинетическую энергию невидимого беспорядочного движения атомов и молекул вещества, а также в потенциальную энергию их взаимодействия. Эта часть энергии получила название внутренней энергии.
Беспорядочное движение атомов и молекул воспринимается нашими органами чувств в виде тепла.
Таково физическое объяснение кажущейся потери механической энергии при ударе, трении и пр.
В физике закон сохранения энергии распространяют не только на явления, рассматриваемые в механике, но на все без исключения процессы, происходящие в природе.
Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую.
В основе закона сохранения энергии лежит такое свойство времени как однородность, т.е. равнозначность всех моментов времени, заключающаяся в том, что замена момента времени t1 моментом времени t2, без изменения значений координат и скоростей тел не изменяет механических свойств системы. Поведение системы, начиная с момента времени t2 будет таким же, каким оно было бы, начиная с момента t1.
Общефизический закон сохранения энергии не может быть выведен из уравнений механики, и должен рассматриваться как одно из наиболее широких обобщений опытных фактов.
ЛЕКЦИЯ №6. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА
6.1. Момент силы и момент импульса относительно неподвижного начала
Пусть О – какая-либо неподвижная точка в инерциальной системе отсчета. Ее называют началом или полюсом. Обозначим через радиус-вектор, проведенный из этой точки к точке A приложения силы
(рис. 1) .
Моментом силы относительно точки О называется векторное произведение радиуса-вектора
на силу
:
,
, (1)
– угол между векторами
и
; направление
выбирается так, чтобы последовательность векторов
,
,
образовывала правовинтовую систему, т. е. если смотреть вдоль вектора
, то поворот по кратчайшему пути от первого сомножителя в (1) ко второму осуществлялся по часовой стрелке, таким образом
совпадает с направлением поступательного движения правого буравчика, рукоятка которого вращается от
к
по наикратчайшему пути.
Моментом нескольких сил относительно точки называется векторная сумма моментов этих сил относительно той же точки
Отметим частный случай двух равных параллельных сил и
, направленных в противоположные стороны.
Такие силы образуют так называемую пару сил. В этом случае
т. е. момент пары сил равен моменту одной из этих сил относительно точки приложения другой. Очевидно, что момент пары сил не зависит от выбора точки О. В частности, если равные и противоположно направленные силы и
действуют вдоль одной и той же прямой, то они коллинеарны с вектором
, и поэтому момент пары таких сил равен нулю.
Моментом импульса материальной точки относительно точки О называется векторное произведение радиуса-вектора на импульс
:
Для системы n материальных точек моментом импульса относительно некоторой точки О называется векторная сумма моментов импульсов этих точек относительно того же начала:
6.2. Уравнение моментов
Предположим, что точка О неподвижна. В случае одной материальной точки, дифференцируя (3), получаем
При неподвижной точке О вектор , равный
, параллелен
и поэтому
. Кроме того
.
Э
Рис. 2
то уравнение моментов для одной материальной точки. Распространим его на систему материальных точек, для чего запишем уравнение (5) для каждой материальной точки механической системы, понимая под М момент всех действующих на нее сил, как внутренних так и внешних. Затем сложим все эти уравнения. Внутренние силы входят в систему попарно так, что





Моментом силы механической системы относительно оси называется проекция на эту ось вектора момента силы системы относительно любой точки, выбранной на рассматриваемой оси (рис. 2). Соответственно, моментом импульса относительно оси называется проекция на эту ось вектора момента импульса относительно любой точки на данной оси.
Можно доказать, что выбор точки на оси влияет на значения моментов импульса и
относительно точки, но не влияет на значения соответствующих проекций моментов на эту ось.
Если мы выбираем прямоугольную систему координат с началом, совпадающим с полюсом, то имеем:
6.3. Закон сохранения момента импульса
Если система замкнута (т. е. внешних сил нет), то и, следовательно, согласно уравнению (6) вектор
не изменяется со временем, т.е.
. Отсюда вытекает закон сохранения момента импульса, который гласит, что
МОМЕНТ ИМПУЛЬСА ЗАМКНУТОЙ СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК ОСТАЕТСЯ ПОСТОЯННЫМ.
Момент импульса сохраняется и для незамкнутой системы, если сумма моментов внешних сил равна нулю.
В основе закона сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем направлениям.
Поворот замкнутой системы частиц без изменения их взаимного расположения и относительных скоростей не изменяет механических свойств системы. Движение частиц после поворота будет таким же, каким оно было бы, если бы поворот не был осуществлен.
Наряду с законом сохранения импульса и энергии закон сохранения момента импульса является одним из фундаментальных законов физики. Такой расширенный закон сохранения момента импульса уже не является теоремой механики, а должен рассматриваться как самостоятельный общефизический принцип, являющийся обобщением опытных фактов.
6.4. Движение в поле центральных сил
Если на материальную точку действует сила вида
то говорят, что материальная точка находится в поле центральных сил, если начало координат совпадает с центром сил.
Примерами материальных точек в таком поле являются искусственные спутники Земли.
Очевидно, что момент центральных сил
относительно центра сил 0 равен нулю. Следовательно, при движении в центральном поле момент импульса материальной точки остается постоянным.
Вектор всегда ортогонален плоскости векторов
и
. Поэтому постоянство направления
свидетельствует о том, что движение материальной точки в поле центральных сил происходит в одной плоскости.
Материальная точка, движущаяся в поле центральных сил, представляет собой консервативную систему. Поэтому при движении материальной точки сохраняется и полная механическая энергия точки, т. е.
Для гравитационного центрального поля большой массы М имеем
В этом случае траекторией материальной точки является эллипс, один из фокусов которого совпадает с центром силы, т. е. с положением центра массы М. При E = 0 траекторией частицы является парабола, а при Е > О – гипербола.
Л Е К Ц И Я № 7 . Т В Е Р Д О Е Т Е Л О В М Е Х А Н И К Е
7.1. Степени свободы. Обобщенные координаты
Положение точки в пространстве можно задать некоторым числом независимых координат, например, тремя координатами х, у, z декартовой системы. Но это можно сделать и иначе. Например, вместо прямоугольных можно взять цилиндрические r, z, или какие-либо другие координаты. Существенно, однако, что при любом выборе системы координат число независимых координат, требующихся для однозначного определения положения точки, которая может перемещаться в пространстве как угодно, равно трем. Про такую точку говорят, что она обладает тремя степенями свободы.