Главная » Просмотр файлов » Краткие ответы на всю теорию за 1 семестр по матану

Краткие ответы на всю теорию за 1 семестр по матану (1017920), страница 6

Файл №1017920 Краткие ответы на всю теорию за 1 семестр по матану (Краткие ответы на всю теорию за 1 семестр по матану) 6 страницаКраткие ответы на всю теорию за 1 семестр по матану (1017920) страница 62017-07-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Тогда образ интервала (a,b) (соответственно [a,b), (a,b]) есть интервал (,) (соответственно [,), (,]) и обратная к f функция x=g(y) однозначна, строго возрастает и непрерывна на (,) [,), (,])). Дадим рассматриваемому у приращение y0. Ему соответствует приращение x обратной функции, также не равное нулю в силу строгой монотонности f. Поэтому x/y=1/(y/x). Если теперь y0, то в силу непрерывности g(y) при­ращение x также 0; но при х0 y/xf'(x)0, =>, существует предел limy0x/y=1/(limy0y/x)=1/f'(x). Этим формула [1] доказана. Примечание: Если f'(x)0 непрерывна на (a,b), то g'(y) непрерывна на (A,B). Это следует из [1], где можно положить x=g(y): g'(y)=1/f'[g(y)] (y(A,B)). Ведь сложная функция f'[g(y)], состоящая из непрерывных функций f' и g, непрерывна.

Основные формулы:

Для сложных функций:

В20.Производная сложной функции. Логарифмическая производная. Производная функции,заданной неявно.

Теорема №1: Если функция x=(t) имеет производ­ную в точке t, а функция y=f(x) имеет производную в точке х, то сложная функция у=F(t)=f[(t)] (1) имеет производную (по t) в точке t и справедлива равен­ство F'(t)=f'(x)'(t) (2) или y't=y'xx't (3) Доказательство: Зададим t, ему соответствует значение х=(t). Придадим t приращение t0. это вызовет приращение x=(t+t)– (t). Так как функ­ция y=f(x) имеет производную в точке х, то на осно­вании равенства f'(x)=lim(x0)y/x=lim(x0)f(x+x)–f(x)/x, имеем

y=f'(x)x+(x)x (4), где (x)0 при х0. Будем считать, что (0)=0. Равенство (4) при этом соглашении выполняется, т.к. если подставить в него x=0, то получится 0=0. Разделим теперь равенство (4) на t0: y/t=f'(x)(x/t)+ (x)(x/t) (5). Пусть t0. Тогда, потому что функция x(t)(t) имеет производную в точке t и, =>, непрерывна. Переходим в равенстве (5) к пределу при t0. Тогда x0 и (x)0, поэтому получим y't=f'(x)x'(t)+0x'(t)=f'(x)x'(t)=y'xx't. Теорема доказана.

Формула (1) может быть усложнена. Например, если – z=f(y), y=(x), x=() и все три функции имеют производные в соответствующих точках, то z'=z'yy'xx'

Логарифмическое дифференцирование

Если требуется найти из уравнения , то можно:

а) логарифмировать обе части уравнения ;

б) дифференцировать обе части полученного равенства, где есть сложная функция от х, .

в) заменить его выражением через х .

Пример:

§6. Метод логарифмического дифференцирования.



5. Дифференцирование неявных функций Пусть уравнение определяет как неявную функцию от х. а) продифференцируем по х обе части уравнения , получим уравнение первой степени относительно ; б) из полученного уравнения выразим .

Пример: .

В21.Приращение и дифференциал функции одной переменной.Условия существования диффренциала. Инвариантность форм записи дифференциала первого порядка.

Дифференциал функции:

Пусть функция y=f(x) дифференцируема в точке х: т.е. для её прира­щения у в этой точке выполняется равенство [2]. Тогда у есть сумма двух слагаемых. Первое из них A x про­порционально x, а в таких случаях говорят, что оно есть линейная однородная функция от х. Второе – о(х)x0 является бесконечно малой функцией высшего порядка малости сравнительно с x. Если А0, то второе сла­гаемое стремится к нулю при x0 быстрее, чем пер­вое. В связи с этим первое слагаемое A x=f'(x)x наз. главным членом приращения y. Это слагаемое называют дифференциалом функции и обозначают символом dy. Итак, по определению dy=df=f'(x)x. На (рис. 47) изображен график Г функции y=f(x);

Т –касательная к Г в точке A, имеющей абсциссу х; f'(x)=tg, где  – угол, образованный касательной с осью х; dy=f'(х)x=tgx=CD, DB=y–dy=o(x)x0. Таким образом, дифференциал функции у в точке х, соответствующий приращению x, есть приращение ординаты точки, ле­жащей на касательной (dy=CD). Вообще говоря, dyy, ибо y=dy+ o(x)x0, а второй член этой суммы, вообще говоря, не равен нулю. Только для линейной функции у=Ах+В имеет место ра­венство у=А x=dy для любого х. В частности, для у=х, dy=dx=x т.е. дифференциал и приращение независимой переменной равны между собой (dx=x). По­этому дифференциал произвольной функции f обычно записывают так: dy=f'(x)dx, откуда f'(x)=dy/dx,

т.е. производная функции f в точке х равна отношению дифференциала функции в этой точке к дифференциалу независимой переменной х.

Это объясняет, что выражение dy/dx употребляется как символ для обозначения произ­водной. Надо иметь в виду, что дифференциал dx независимой переменной не зависит от х, он равен x – произвольному приращению аргумента х. Что же касается дифференциала dy функции у (отличной от х), то он зависит от х и dx. Отметим формулы:

d(u)=dud [3]; d(u)=ud+du [4]; d(cu)=cdu (c – постоянная) [5]; d(u/)=(du–ud)/2 (при 0) [6]; где предполагается, что u и  – дифференцируемые функции в рассматриваемой точке х. Например, формула [6] доказывается так:


Определение: Пусть y=f(x) определена в некоторой О(х0) – она называется дифференцируемой в точке х0, если её приращение в этой точки представимо в виде:

∆y=∆f(x0)=A∆x+(∆x)∆x)1

(0)=0 A=const

Определение: линейная ∆х часть приращение дифференцируемой функции называется дифференциалом функции в точке х0:

dy=df(x0)A∆x

Теорема: Если функция дифференцируема в точке х0 то A=f’(x0), то она имеет производную в этой точке, то A=f’(x0); наоборот если функция имеет производную в этой точке, то она дифференцируема в этой точке – называется дифференциалом.

Доказательство: Пусть y=f(x) дифференцируема в точке х0, то есть в некоторой О(х0) справедливо равенство ∆f(x0)=A∆x+(∆x)∆x1; (0)=0. Поделим обе части этого равенства на ∆х и приведём к пределу при ∆х0:

lim(∆f(x0))/∆x=lim(A+(x))=A. Этот предел существует, меньше , тогда по определению этот предел есть

x0 ∆x0

производная.

Доказательство: (в обратную сторону) Пусть в точке х0  f’(x0)(<) – это означает, что f(x) определена в некоторой О(х0) и  lim(∆f(x0))/∆x=f’(x0) по определению предела следует, что в некоторой О(х0)

x0

(∆f(x0))/∆x=(∆х)+f’(x0) при ∆х0  ∆f(x0)=f’(x0)+(∆x)∆x, так как lim(∆x)=0, то в точке х0 y (∆x) может

х0

быть лишь устранимым разрывом . Устраним его, определим и доопределим:

(0)=0, тогда ∆f(x0)=f’(x0)∆x+(∆x)∆x  A=f’(x0) из установленного соответствия получим выражения для дифференцируемой функции df(x0)=f’(x0)∆x

Следствие: по определению полагают дифференциал независимой переменной равной её приращению

dx=∆x (х - независимая переменная)

df(x)=f’(x)dx

f(x)=x – вычислим дифференциал f’(x)=1 df(x)=dx=f(x)∆x=1∆x

Замечание: дифференциал функции зависит от двух переменных – от самой точки х и от ей приращения

y=cosx x0=/2 ∆x=/180

y’=-sinx y’(/2)=-sin(/2)=-1

dy(/2)=-1∆x=-1/180=-/180

Теорема: Пусть y=f(x) дифференцируема в точке х0, а z=g(y) дифференцируема в точке у0=f(x0), тогда сложная функция z=g(f(x) - дифференцируема в точке х0 и z’(x0)=g’(f)f’(x)

Доказательство: (1) ∆z=g’(y0)∆y+(∆y)∆y

(2) ∆y=f(x0)∆x+(∆x)∆x (0)=0 (0)=0

Подставим в первое равенство второе:

∆z=g’(y0)f(x0)∆x+g’(y0)(∆x)∆x+[f’(x0)+(∆x)∆x][f’(x0)∆x+(∆x0∆x]

lim∆z/∆x=limg’(x0)f’(x0)+limg’(x0)(∆x)+lim (f’(x0)+(∆x)∆x)[f’(x0)+∆x]  z’(x0)=g’(y0)f’(x0) что и требовалось

x0 x0 x0 x0

доказать.Св-ва:
1. (UV)`=U`V`, то (UV)`dx=U`dxV`dx, d(UV)=d(UV)

2. (UV)`=U`V+V`U, то (UV)`dx=V`dU+U`dV

3.d(c)=c`dx=0*dx=0

4. d(U/V)`=(V`dU-U`dV)/V2.

Инвариантность форм записи: дифференциал сложной функции имеет тот же вид, какой он имел бы в том случае, если бы промежуточный аргумент и был независимой переменной. Иначе:форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Найдем диф.сложной функции: y=f(u), u=g(x) или y=(f(g(x))). По правило диффер.сложной функции: dy/dx=f’(u)g’(x) => dy=f’(u)g’(x)dx но g’(x)dx=du поэтому dy=f’(u)du

В22.Геометрический смысл дифференциала функции одной перменной. Касательная и нормаль к плоскости.

Геометрический смысл дифференциала функции и уравнение касательной.


f’(x0)=tg

уравнение прямой : Y=kx+b

y0=f(x0)=kx0+b

k-угловой коэффициент прямой

k=tg=f’(x0)

Y=f(x0)+f(x0)-f’(x0)x0

b=f(x0)-kx0

Y=f(x)+f’(x0)(x-x0)

∆f(x0)=f’(x0)∆x+(∆x)∆x при ∆х0  в некоторой

O(x0) f(x0)=f’(x0)+f’(x0)∆x+(∆x)∆x при ∆х0

Y1=f(x0)+f’(x0)(x-x0)a=f’(x0)+f’(x0)∆x

df(x0)=f’(x0)∆x

Геометрический смысл дифференциала:

df(x0) – это приращение ординаты при движение по касательной проведённой к графику функции в точки (х0;f(x0).

Замечание: Часто говорят о касательной проведённой в точке х0.

Линеаризация функции.

Определение: Замена функции в окрестности данной точки линейной функции называется линеаризацией функции, точнее в О(х0) заменяется отрезком касательной в точке х0.

( *) f(x)-Y=(∆x)∆x-o(∆x)

Если в равенстве (*) отбросить правую часть, то мы

получим приближённое равенство:

f(x)f(x0)+f’(x0)(x-x0), xx0

Y=f(x0)+f’(x0)(x-x0) – уравнение касательной в точке х0

Формула получена из определения дифференциала в точке х0 функции

f(x)=f(x0)+f(x0)∆x+o∆x при ∆х0 – называется критерием дифференциальности функции в точке х0.

Рассмотрим кривую, уравнение которой есть y=f(x). Возьмем на этой кривой точку М(х , у ), и составим уравнение касательной к данной кривой в точке М, предполагая, что эта касательная не параллельна оси Оу.

Уравнение прямой с угловым коэффициентом в общем виде есть у=kх + b. Поскольку для касательной k=f ¢(x ), то получаем уравнение y=f ¢(x )×x + b. Параметр b найдем из условия, что касательная проходит через точку М(х , ). Поэтому ее координаты должны удовлетворять уравнению касательной: у = f ¢(x )×x + b . Отсюда b=y – f ¢(x )×x .

Характеристики

Тип файла
Документ
Размер
8,26 Mb
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее