Нов_16_21 (1016683)

Файл №1016683 Нов_16_21 (Методичка по линейной алгебре)Нов_16_21 (1016683)2017-07-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

21


Задача 9. Найти точку пересечения медиан в треугольнике АВС: A(0;12;24), B(36;6;6), C(18;48;36).

Напомним формулу деления отрезка в данном отношении. Точка M(x;y;z) делит отрезок в отношении , если .

Если координаты точек и соответственно равны , , то координаты точки М вычисляются по следующим формулам: , , .

Решение. Точка делит отрезок ВС пополам (в отношении =1).

Тогда , , .

Известно, что точка пересечения медиан М делит отрезок AD в отношении .

Следовательно , ,

.

Ответ: M(18;22;22).

Контрольная работа 2.

Задача 1. Вершины треугольника АВС имеют координаты: A(4;2), B(10;10), C(20;14).

Найти: а) уравнение и длину медианы, проведенной из вершины А;

б) уравнение и длину высоты, проведенной из вершины А;

в) уравнение биссектрисы, проведенной из вершины А;

г) проекцию точки А на сторону ВС;

д) точку, симметричную точке А относительно стороны ВС.

Прежде чем приступить к решению данной задачи, напомним некоторые сведения об уравнении прямой на плоскости.

1.Уравнение прямой, проходящей через точку перпендикулярно вектору (называемому нормальным вектором прямой) может быть записано в виде .

  1. Уравнение прямой, проходящей через точку параллельно вектору (называемому направляющим вектором прямой) может быть записано в виде .

  2. Уравнение вида Аx+By+C=0 (линейное относительно координат x, y) определяет на плоскости прямую линию и вектор будет перпендикулярен этой прямой.

  3. Расстояние от точки до прямой, заданной уравнением Аx+By+C=0 вычисляется по формуле .

Определим уравнение медианы АМ.

Точка М( ) середина отрезка ВС.

Тогда , . Следовательно точка М имеет координаты M(15;17). Уравнение медианы на языке аналитической геометрии это уравнение прямой, проходящей через точку А(4;2) параллельно вектору ={11;15}. Тогда уравнение медианы имеет вид . Длина медианы АМ= .

Уравнение высоты AS - это уравнение прямой, проходящей через точку А(4;2) перпендикулярно вектору ={10;4}. Тогда уравнение высоты имеет вид 10(x-4)+4(y-2)=0, 5x+2y-24=0.

Длина высоты - это расстояние от точки А(4;2) до прямой ВС. Данная прямая проходит через точку B(10;10) параллельно вектору ={10;4}. Ее уравнение имеет вид , 2x-5y+30=0. Расстояние AS от точки А(4;2) до прямой ВС, следовательно, равно AS= .

Для определения уравнения биссектрисы найдем вектор параллельный этой прямой. Для этого воспользуемся свойством диагонали ромба. Если от точки А отложить единичные векторы одинаково направленные с векторами и , то вектор, равный их сумме, будет параллелен биссектрисе. Тогда имеем = + .

={6;8}, , ={16,12}, .

Тогда = В качестве направляющего вектора искомой прямой может служить вектор ={1;1}, коллинеарный данному. Тогда уравнение искомой прямой имеет вид или x-y-2=0.

Точка S(x,y) - проекция точки А на прямую ВС является точкой пересечения высоты AS и стороны ВС. Для определения координат точки S имеем систему уравнений.

Для ее решения воспользуемся формулами Крамера .

, , .

Имеем , . Cледовательно, S имеет координаты S( ).

Для определения координат симметричной точки воспользуемся тем, что точка S делит отрезок АК пополам (в отношении =1). Тогда . Тогда . Аналогично

К

Ответ: уравнение медианы ; длина медианы ; уравнение высоты 5x+2y-24=0; длина высоты ; уравнение биссектрисы x-y-2=0; проекция точки А на сторону ВС точка S( ); симметричная точка К .

Задача 2. Даны координаты вершин пирамиды: . Требуется найти:

1)косинус угла между ребрами AB и AC;

2)площадь грани ABC;

3)проекцию вектора на ;

4)объем пирамиды;

5)уравнение прямой AD;

6) уравнение плоскости ABC;

7)уравнение и длину высоты, опущенной из вершины D на грань ABC;

8)точку K - проекцию точки D на грань ABC;

9)точку P - проекцию точки D на ребро AB.

Напомним некоторые сведения об уравнениях прямой и плоскости в пространстве.

  1. Уравнение плоскости, проходящей через точку перпендикулярно вектору ={A;B;C} имеет вид .

2.Уравнение вида Ax+By+Cz+D=0 (линейное относительно координат x y z) определяет в пространстве плоскость и вектор ={A;B;C} (называемый нормальным вектором плоскости ) перпендикулярен этой плоскости.

  1. Расстояние d от точки до плоскости, заданной уравнением Ax+By+Cz+D=0 равно .

4.Уравнение прямой, проходящей через точку параллельно вектору = (называемый направляющим вектором) может быть записано в одном из двух видов:

канонический ;

параметрический где

Решение.

Косинус угла  между ребрами AB и AC - это косинус угла между векторами и .

Имеем ={-12;2;-4}, ={-4;2;3}. cos= , , ,


Тогда cos=

Площадь грани ABC - это площадь треугольника АВС, которая равна .

{14;52;-16}

.

Проекция вектора на вычисляется по формуле . Так как ={-3;4;-3}, то ,

( )=(-12)(-3)+24+(-4)(-3)=56.

Следовательно .

Объем пирамиды вычисляется по формуле . Используя формулу вычисления смешанного произведения, получаем

Следовательно .

С точки зрения понятий аналитической геометрии уравнение прямой AD - это уравнение прямой проходящей через точку параллельно вектору ={-3;4;-3}. В каноническом виде уравнение данной прямой имеет вид ,

в параметрическом .

Для построения уравнения плоскости АВС воспользуемся следующими соображениями. (Отметим, что в учебниках имеется готовая формула уравнения плоскости, проходящей через три точки, однако мы не будем ее использовать.) Для построения уравнения плоскости необходимо знать точку и вектор, перпендикулярный этой плоскости. Даны координаты трех точек плоскости. Для построения перпендикулярного вектора воспользуемся свойством векторного произведения - векторное произведение векторов перпендикулярно каждому из векторов. Следовательно, если мы имеем два неколлинеарных вектора, параллельных плоскости, то их векторное произведение будет перпендикулярно этой плоскости. Следовательно, перпендикулярный плоскости вектор может быть представлен в виде = .

Данное векторное произведение вычислено ранее. Имеем ={14;52;-16}.

Тогда уравнение плоскости имеет вид

14(x-10)+52(y-6)-16(z-6)=0 или 7x+26y-8z-178=0.

Для того, чтобы найти уравнение высоты, опущенной из вершины D(7;10;3) на грань ABC , будем иметь в виду следующее. Высота - это прямая линия, а для определения уравнения прямой необходимо знать точку и направляющий вектор. Координаты точки D нам известны. Но поскольку прямая перпендикулярна плоскости АВС, то она параллельна вектору ={14;52;-16}, перпен­дикулярному данной плоскости. (Координаты данного вектора были найдены при решении предыдущей задачи.)

Зная координаты точки D(7;10;3) и координаты вектора ={14;52;-16} получаем следующее параметрическое уравнение искомой прямой

Характеристики

Тип файла
Документ
Размер
318 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее