annot_11.03.04_te_o_2016 (1016234), страница 36
Текст из файла (страница 36)
Структура и содержание дисциплиныОбщая трудоемкость дисциплины составляет 6 зачетных единиц – 216 часов. Вструктуру дисциплины входят 32 часов лекционных и 32 часов практических занятий.Аннотация к рабочей программе дисциплины Б1.В.ДВ.3.2 «Схемотехникаспециализированных интегральных схем»1. Цели и задачи преподавания дисциплины.Дисциплина «Схемотехника специализированных интегральных схем» имеет своейцелью способствовать формированию у обучающихся общепрофессиональных (ОПК-2, 3,6, 7) и профессиональной (ПК-5) компетенций в соответствии с требованиями ФГОС ВОпо направлению подготовки бакалавров 11.03.04 «Электроника и наноэлектроника» сучетом профиля подготовки «Твердотельная электроника».Задачи дисциплины: изучение физических процессов в МДП-структурах; изучение физических основ работы p-МДП и n-МДП транзисторов; изучение математических моделей и эквивалентных электрических схем,отображающих работу МДП-транзисторов и применяемых в современных САПР дляанализа и схемотехнического проектирования МДП-интегральных схем; изучение схемотехнических основ построения логических и функциональныхМДП-интегральных схем; изучение технологии изготовления МДП-интегральных схем (p - и n-канальных),КМОП-ИС, БиКМОП-ИС, ПЗС-структур; приобретение практических навыков по выполнению расчетов МДПтранзисторов и схемотехническому проектированию цифровых МДП-интегральных схем. получение знаний о состоянии и перспективных направлениях развитиятехнологии производства МДП-интегральных схем.2.
Местодисциплинывструктуреосновнойпрофессиональнойобразовательной программы (ОПОП) бакалавриата.Дисциплина «Схемотехника специализированных интегральных схем» относится кциклу Б.1 ОПОП (вариативная часть). Рабочая программа курса ориентирована настудентов, изучавших ранее «Метрология, стандартизация и сертификация», «Физикохимические основы процессов микро- и нанотехнологии», «Математический анализ» и«Физика». Изучается на 3,4 курсах.3. Планируемые результаты обучения по дисциплине, соотнесенные спланируемыми результатами освоения программы специалитета (компетенциямивыпускников)В процессе изучения дисциплины формируются следующие компетенции:ОПК-2 - способность выявлять естественнонаучную сущность проблем,возникающих в ходе профессиональной деятельности, привлекать для их решениясоответствующий физико-математический аппарат;ОПК-3 - способность решать задачи анализа и расчета характеристикэлектрических цепей;ОПК-6 - способность осуществлять поиск, хранение, обработку и анализинформации из различных источников и баз данных, представлять ее в требуемомформате с использованием информационных, компьютерных и сетевых технологий;ОПК-7 - способность учитывать современные тенденции развития электроники,измерительной и вычислительной техники, информационных технологий в своейпрофессиональной деятельности;ФормируемыекомпетенцииПК-5 - готовность выполнять расчет и проектирование электронных приборов,схем и устройств различного функционального назначения в соответствии с техническимзаданием с использованием средств автоматизации проектирования;ОПК-2ОПК-3ОПК-6Планируемые результаты обучения по дисциплине (модулю), характеризующиеэтапы формирования компетенцийЗнатьУметьВладетьцели, задачи, место физикисреди других научныхдисциплин и ее влияние нанаучно-техническийпрогресс; основныепроцессы, явления, объекты,изучаемые в данном курсе;Методы и способы решениязадач анализа и расчетахарактеристик электрическихцепейраскрывать взаимосвязь междуосновными разделами физики идругими науками;выбирать методы при изучениитого или иного явления,учитывая все их преимущества инедостаткиметодами решенияпроизводственных задачанализировать и рассчитыватьхарактеристики электрическихцепейнавыками решения задачанализа и расчетахарактеристик электрическихцепейпредставлять информацию втребуемом формате сиспользованиеминформационных,компьютерных и сетевыхтехнологийкомпьютерными и сетевымитехнологиями в объеме,необходимом для поиска,хранения, обработки ианализа информацииспособы поиска, хранения,обработки и анализаинформации из различныхисточников и баз данныхОПК-7способы получения (WWW),хранения (носители),переработки информацииполучать с компьютеранеобходимые данные в виденеобходимом для дальнейшегоиспользованияПК-5технологию работы на ПК всовременных операционныхсредах, основные методыразработки алгоритмов ипрограммприменять языкипрограммирования высокогоуровня, программноеобеспечение и технологиипрограммирования для типовыхинформационных объектовспособностью работать синформацией в глобальныхкомпьютерных сетях;готовностью учитыватьсовременные тенденцииразвития электроники,измерительной ивычислительной техники,информационных технологийвычислительными средствамидля решения практическихзадач в своейпрофессиональнойдеятельности и дляорганизации своего труда.способностью собирать,обрабатывать, анализироватьи систематизировать научнотехническую информацию потематике исследования,использовать достиженияотечественной и зарубежнойнауки, техники и технологии4.
Межпредметные связи.Процесс изучения дисциплины направлен на формированиекомпетенций, взамосвязанных с другими дисциплинам:ОПК-2 - Алгебра и геометрия (1-2 семестры – взаимодействие);- Химия (1-2 семестры – взаимодействие);следующих- Физика (1-3 семестры – взаимодействие);- Математический анализ (1-4 семестры – взаимодействие);- Дискретная математика (3 семестр – взаимодействие);- Основы теории цепей (3-4 семестры – взаимодействие);- Методы математической физики (3-4 семестры – взаимодействие);- Квантовая механика (4 семестр – взаимодействие);- Теория вероятности (4 семестр – взаимодействие);- Материалы и элементы электронной техники (4-5 семестры – взаимодействие);- Автоматизация эксперимента (5 семестр – взаимодействие);- Физико-химические основы процессов микро- и нанотехнологии (5 семестр –взаимодействие);- Квантовая и оптическая электроника (5 семестр – взаимодействие);- Статистическая физика (5 семестр – взаимодействие);- Нанотехнологии в электронике (5-6 семестры – взаимодействие);- Микросхемотехника (5-6 семестры – взаимодействие);- Физика конденсированного состояния (5-7 семестры – взаимодействие);- Технологии электронной компонентной базы (6 семестр – взаимодействие);- Физика полупроводниковых приборов (6 семестр – взаимодействие);- Фотоника (6-7 семестры – взаимодействие);- Физика низкоразмерных структур (7 семестр – взаимодействие);- Перспективные материалы наноэлектроники (7-8 семестры – взаимодействие);- Твердотельная электроника (7-8 семестры – взаимодействие);- Микро- и наноситемная техника (7-8 семестры – взаимодействие);- Основы проектирования электронной компонентной базы (7-8 семестры –взаимодействие);ОПК-3 - Физика (1-3 семестры – взаимодействие);- Основы теории цепей (3-4 семестры – взаимодействие);- Автоматизация эксперимента (5 семестр – взаимодействие);- Микросхемотехника (5-6 семестры – взаимодействие);- Твердотельная электроника (7-8 семестры – взаимодействие).ОПК-6 - История (1 семестр – взаимодействие);- Информатика (1 семестр – взаимодействие);- Введение в специальность (1 семестр – взаимодействие);- Химия (1-2 семестры – взаимодействие);- Алгебра и геометрия (1-2 семестры – взаимодействие);- Физика (1-3 семестры – взаимодействие);- Математический анализ (1-4 семестры – взаимодействие);- Практика по получению первичных профессиональных умений и навыков, в томчисле первичных умений и навыков научно-исследовательской деятельности (2 семестр –взаимодействие);- История и методология научных исследований (2 семестр – взаимодействие);- Информационные технологии (2-3 семестры – взаимодействие);- Экономика (3 семестр – взаимодействие);- Дискретная математика (3 семестр – взаимодействие);- Методы математической физики (3-4 семестры – взаимодействие);- Основы теории цепей(3-4 семестры – взаимодействие);- Экология (4 семестр – взаимодействие);- Квантовая механика (4 семестр – взаимодействие);- Теория вероятности (4 семестр – взаимодействие);- Материалы и элементы электронной техники (4-5 семестры – взаимодействие);- Статистическая физика (5 семестр – взаимодействие);- Автоматизация эксперимента (5 семестр – взаимодействие);- Квантовая и оптическая электроника (5 семестр – взаимодействие);- Физико-химические основы процессов микро- и нанотехнологии (5 семестр –взаимодействие);- Нанотехнологии в электронике (5-6 семестры – взаимодействие);- Микросхемотехника (5-6 семестры – взаимодействие);- Физика конденсированного состояния (5-7 семестры – взаимодействие);- Физика полупроводниковых приборов (6 семестр – взаимодействие);- Системы автоматизированного проектирования в электронике (6-7 семестры –взаимодействие);- Фотоника (6-7 семестры – взаимодействие);- Физика низкоразмерных структур(7 семестр – взаимодействие);- Научно-исследовательская работа(7 семестр – взаимодействие);- Перспективные материалы наноэлектроники (7-8 семестры – взаимодействие);- Твердотельная электроника(7-8 семестры – взаимодействие);- Микро- и наноситемная техника (7-8 семестры – взаимодействие);- Основы проектирования электронной компонентной базы (7-8 семестры –взаимодействие);ОПК-7 - Информационные технологии (2-3 семестры – взаимодействие);- Основы теории цепей(3-4 семестры – взаимодействие);- Материалы и элементы электронной техники (4-5 семестры – взаимодействие);- Квантовая и оптическая электроника (5 семестр – взаимодействие);- Автоматизация эксперимента (5 семестр – взаимодействие);- Физико-химические основы процессов микро- и нанотехнологии (5 семестр –взаимодействие);- Микросхемотехника (5-6 семестры – взаимодействие);- Технологии электронной компонентной базы (6 семестр – взаимодействие);- Методы диагностики и анализа микро- и наносистем (6 семестр –взаимодействие);- Системы автоматизированного проектирования в электронике (6-7 семестры –взаимодействие);- Фотоника (6-7 семестры – взаимодействие);- Физика низкоразмерных структур(7 семестр – взаимодействие);- Научно-исследовательская работа(7 семестр – взаимодействие);- Перспективные материалы наноэлектроники (7-8 семестры – взаимодействие);- Твердотельная электроника (7-8 семестры – взаимодействие);- Микро- и наноситемная техника (7-8 семестры – взаимодействие);- Основы проектирования электронной компонентной базы (7-8 семестры –взаимодействие);ПК-5 - Информационные технологии (2-3 семестры – взаимодействие);- Нанотехнологии в электронике (5-6 семестры – взаимодействие);- Микросхемотехника (5-6 семестры – взаимодействие);- Системы автоматизированного проектирования в электронике (6-7 семестры –взаимодействие);- Научно-исследовательская работа(7 семестр – взаимодействие);- Микро- и наноситемная техника (7-8 семестры – взаимодействие);- Основы проектирования электронной компонентной базы (7-8 семестры –взаимодействие);Освоение дисциплины является необходимым для изучения последующихдисциплин в рамках дальнейшего формирования, закрепления и развития следующихкомпетенций:ОПК-2 - Перспективные технологические процессы микро- и наноэлектроники (8семестр);- Элементы и приборы наноэлектроники (8 семестр).ОПК-6 - Перспективные технологические процессы микро- и наноэлектроники (8семестр);- Элементы и приборы наноэлектроники (8 семестр);- Практика по получению профессиональных умений и опыта профессиональнойдеятельности (8 семестр);- Преддипломная практика (8 семестр);- Государственная итоговая аттестация (8 семестр).ОПК-7 - Перспективные технологические процессы микро- и наноэлектроники (8семестр);- Элементы и приборы наноэлектроники (8 семестр);- Практика по получению профессиональных умений и опыта профессиональнойдеятельности (8 семестр);- Преддипломная практика (8 семестр);- Государственная итоговая аттестация (8 семестр).ПК-5 - Практика по получению профессиональных умений и опытапрофессиональной деятельности (8 семестр);- Преддипломная практика (8 семестр);- Государственная итоговая аттестация (8 семестр).5.