Популярные услуги

Главная » Лекции » Транспорт » Лекции по путевым датчикам » Техническое обслуживание путевых датчиков

Техническое обслуживание путевых датчиков

2021-03-09СтудИзба

Тема лекции 15

Техническое обслуживание путевых датчиков

15 1. Регулировка рельсовых цепей

Рельсовые цепи регулируют с целью получения на путевом реле требуемого напряжения, при котором обеспечивается бесперебойная работа цепи во всех режимах. Правильно отрегулированная рельсовая цепь должна устойчиво работать круглый год при любой погоде.

Для каждого типа рельсовых цепей имеется нормаль, в которой в табличной форме представлены допустимые значения напряжений на путевых реле и питающих концах рельсовых цепей перегонов и станций.

Сущность регулировки заключается в том, что в соответствии со схемой и регулировочной таблицей устанавливают необходимое напряжение при номинальных ограничивающих сопротивлениях по концам и заданных коэффициентах трансформации согласующих трансформаторов и дроссель-трансформаторов. Необходимо учиты­вать электрические параметры РЦ, длину, фактическое напряжение источника питания и состояние балласта.

Норму напряжения на путевом реле и питающем конце каждой рельсовой цепи определяют по нормали и устанавливают один раз (при вводе устройств в эксплуатацию или при контрольных регули­ровочных проверках).

Регулировочные таблицы для перегонных рельсовых цепей соот­ветствуют номинальному напряжению источника питания.

Рекомендуемые материалы

Импульсные рельсовые цепи постоянного тока с реле ИМШ-0,3 регулируют по таблице 1 при напряжении батареи 2,2 В.

    Таблица 1

Длина рельсовой цепи, м

Напряжение батареи, В

Сопротивление, Ом

Напряжение на реле, В, при балласте

питающего

релейного

мокром

промерзшем

До 500

2,2

2,1

1,60

0,084

0,16

500—1000

1,6

1,20

0,20

1000—1500

1,4

0,90

0,24

1500—2000

1,25

0,60

0,28

2000—2250

1,20

0,50

0,29

2250—2500

1,15

0,40

0,31

2500—2600

1,10

0,35

0,32

Кодовые рельсовые цепи переменного тока 25 Гц регулируют по таблице 2.

                   Таблица 2

Длина рельсовой цепи, м

Напряжение 25 Гц, В

на выходе ПЧ 50/25

на рельсах релейного конца

на фильтре

на реле

До 500

38

0,33

7,1

4,1

0,30

6,6

3,9

500—1000

54

0,37

7,9

4,4

0,30

6,6

3,9

1000—1500

78

0,42

9,1

4,8

0,30

6,6

3,9

1500—2000

111

0,43

10,6

5,4

0,30

6,6

3,9

2000—2250

132

0,54

11,6

5,8

0,30

6,6

3,9

2250—2500

156

0,59

12,7

6,1

0,30

6,6

3,9

При всех видах рельсовых цепей колебание напряжения на пу­тевом реле в зависимости от состояния балласта тем больше, чем больше ее длина.

В импульсных рельсовых цепях постоянного тока напряжение на реле при всех условиях эксплуатации должно быть не менее 0,084 и не более 0,32 В. Таким образом, в зависимости от состояния балласта напряжение на путевом реле импульсной цепи может изменяться в 3,8 раза. В регулировочной, таблице, кроме напряжения на путевой батарее и реле, указывают значения сопротивлений на питающем и релейном концах.

В регулировочных таблицах кодовых РЦ переменно­го тока 25 Гц указывают напряжение на выходе преобразователя ПЧ 50/25 питающего конца. Значения напряжений на рельсах релейного конца, фильтре и реле приведены для двух сос­тояний балласта: промерзшем (верхнее) и мокром (нижнее).

Если при измерениях напряжение на путевом реле окажется выше нормы, его необходимо отрегулировать до нормы. Если же напряже­ние на реле окажется ниже нормы, а напряжение на питающем трансформаторе соответствует верхнему пределу, необходимо тща­тельно проверить состояние рельсовой цепи: исправность стыковых соединителей, состояние балласта, изолирующих стыков, других элементов изоляции, заземлений, перемычек, исправность искровых промежутков и других элементов РЦ и подключаемых к ней внешних устройств.

В цепях переменного тока с реле ДСШ в зависимос­ти от длины и состояния балласта напряжения на путевой обмотке устанавливаются в пределах от 14,2 до 46,2 В. В регулировочных таб­лицах этих РЦ указывают также фазовый угол меж­ду током путевого и напряжением местного элементов.

На участках с электротягой постоянного тока в рельсовых цепях с дроссель-трансформаторами пределы изменения напряжения на пу­тевой обмотке значительно меньше, так как стабильность цепи с дрос­сель-трансформаторами значительно выше и изменение сопротивле­ния изоляции оказывает меньшее влияние на напряжение путевой об­мотки.

В рельсовых цепях с дроссель-трансформаторами и путевыми реле ДСШ-12 напряжение в зависимости от длины и состояния балласта устанавливают от 14 до 21 В, а в рельсовых цепях с одним дроссель-трансформатором (на питающем конце) — от 14 до 25,7 В.

В однониточных рельсовых цепях с реле ДСШ-12 напряжение на путевой обмотке должно быть от 14 до 48 В.

В станционных рельсовых цепях с двумя дроссель-трансформато­рами на участках с электротягой переменного тока напряжение на пу­тевой обмотке реле ДСШ-13 устанавливают в пределах от 15,3 до 19,4 В, в рельсовых цепях с одним дроссель-трансформатором — от 15,3 до 23,2 В, а в однониточных — от 15,0 до 25,2 В.

Необходимо иметь в виду, что напряжение на релейном конце из­меняется пропорционально напряжению на питающем. Если, напри­мер, напряжение на реле требуется увеличить на 10 %, то для этого необходимо увеличить на 10% напряжение на питающем конце.

Регулировочные таблицы не могут учесть все особенности каждой конкретной рельсовой цепи, и поэтому рекомендуемые в таблицах зна­чения напряжений являются в определенной степени ориентировоч­ными. Однако не следует переходить верхний предел напряжения, так как повышенное напряжение на путевом реле, обеспечивая надежную работу в нормальном режиме, ухудшает шунтовую чувствительность рельсовой цепи. При резких изменениях напряжения на путевом реле необходимо проверить исправность всех элементов рельсовой цепи и в первую очередь исправность стыковых соединителей.

Рассмотренные выше регулировочные таблицы составлены с уче­том минимального нормативного значения сопротивления изоляции рельсовой линии 1 Ом·км. В реальных условиях эксплуатации на отдельных участках сопротивление изоляции ниже установленных норм. Существующие рельсовые цепи имеют эксплуатационные запа­сы, обеспечивающие работоспособность цепи при некотором сниже­нии сопротивления изоляции. В этом случае увеличением напряжения источника питания в большинстве случаев может быть достигнуто необходимое минимальное рабочее напряжение на путевом реле. Одна­ко при последующем увеличении сопротивления изоляции напряже­ние на путевом реле может оказаться выше нормы, определяемой регулировочными таблицами, что не допускается.

Осуществляется переход к новым регулировочным таблицам, в которых определены номинальные (при rи=1 Ом×км) и предельные (rи < 1 Ом×км) значения напряжения источников питания, при кото­рых обеспечиваются все режимы работы рельсовой цепи. Это позво­ляет обслуживать рельсовые цепи при номинальном и пониженном сопротивлении изоляции (балласта).

В качестве примера приведена регулировочная таблица (табл. 14.4) для перегонных кодовых рельсовых цепей переменного тока 50 Гц с дроссель-трансформаторами ДТ-0,6 на питающем и ДТ-0,2 на релейном концах. В этой таблице в зависимости от длины цепи при­ведено номинальное значение напряжения трансформатора Uт, соответствующее нормативному значению удельного сопротивления изо­ляции 1 Ом×км, а также предельное (допустимое значение) напря­жение трансформатора Uт пр, определенное из условий обеспечения шунтового и контрольного режимов. В этой же графе в скобках ука­зано предельное сопротивление изоляции.

Для релейного конца в табл. 14.4 указаны напряжение на рельсах Uк и напряжение на реле (переменные).

Таблица 14.4

Длина рельсовой цепи, м

Uт ном

Uт пp

Uк

Up

1000

     70

123(0,17)

0,44—0,47

3,6—3,9

1500

103

166(0,25)

0,44—0,54

3,6—4,4

2000

140

208 (0,36)

0,44—0,61

3,6—5,0

В соответствии с табл. 14.4 устанавливают напряжение на питаю­щем трансформаторе, соответствующее нормативному сопротивле­нию изоляции для данной длины рельсовой цепи согласно графе U т ном. При этом напряжение на путевом реле должно соответство­вать значению, указанному в графе Up.

Если бы сопротивление изоляции рельсовой линии в процессе эксплуатации не снижалось ниже нормы, то отрегулированная ука­занным образом рельсовая цепь не нуждалась бы в повторной регу­лировке. На этом и заканчивают регулировку большинства рельсовых цепей, так как сопротивление изоляции в большинстве случаев соответствует норме.

Однако в некоторых случаях сопротивление изоляции может быть ниже нормативного. Такие рельсовые цепи регулируют по предельно допустимому напряжению источника питания, устанавливая напря­жение питания согласно графе пр. В этом случае используют эксплуатационные запасы аппаратуры и схемы по основным режи­мам, главным образом по шунтовому. Напряжение источника пита­ния не должно превышать предельно допустимое значение, в против­ном случае при резком увеличении сопротивления изоляции возможно невыполнение шунтового режима (потеря шунта).

Если же, в исключительных случаях, напряжение источника пита­ния будет временно установлено выше предельно допустимого, то не­обходимо постоянно наблюдать за изменением сопротивления изоля­ции и при резком его увеличении снижать напряжение источника питания.

С увеличением длины цепи регулировочные запасы уменьшают­ся. Работоспособность рельсовой цепи длиной до 1000 м обеспе­чивается при снижении сопротивления изоляции до 0,16 Ом×км; 0,17 и 0,18 Ом×км соответственно при частоте сигнального тока 25, 50 и 75 Гц; рельсовой цепи длиной 2000 м при тех же частотах сигнального тока — при сопротивлении изоляции 0,32; 0,36 и 0,42 Ом×км (рис. 14.1).

Описание: 14_1

Рис. 14.1. График зависимости предельной длины рельсовой цепи от минимального удельного сопротивления изоляции

Предельная длина значительно зависит от приведенного коэффи­циента возврата Kвн путевого приемника. При Kвн=0,75 (кодовая рельсовая цепь) и частоте сигнального тока 50 Гц работоспособность рельсовой цепи длиной 2000 м обеспечивается при снижении сопро­тивления изоляции до 0,36 Ом×км, в то же время при Квн=0,4 (фазочувствительная рельсовая цепь) и той же частоте сигнального тока работоспособность обеспечивается при снижении сопротивления изо­ляции до 0,6 Ом×км.

В процессе регулировки рельсовой цепи не допускается уменьшать сопротивления ограничивающих резисторов ниже допустимых значе­ний, а также изменять коэффициенты трансформации изолирующих трансформаторов и дроссель-трансформаторов, оптимальное значе­ние которых определено с учетом обеспечения

2  Обслуживание рельсовых цепей

Техническое обслуживание рельсовых цепей производят в соответ­ствии с Инструкцией по техническому обслуживанию устройств сиг­нализации, централизации и блокировки (СЦБ). В соответ­ствии с требованиями ПТЭ и инструкций разработаны техноло­гические карты, регламентирующие технологический процесс обслу­живания устройств СЦБ, в том числе рельсовых цепей. В процессе обслуживания периодически проверяют наличие и исправность сты­ковых и тяговых соединителей, изолирующих элементов рельсовой цепи, шунтовую чувствительность, асимметрию тягового тока, состоя­ние всех элементов рельсовой цепи.

Один раз в четыре недели электромеханик совместно с дорожным мастером проверяют изолирующие элементы измерительным прибо­ром и состояние рельсовых цепей. Изоляцию изолирующих стыков измеряют с помощью вольтметра. Сначала измеряют напряжение между рельсами Uр1 (рисунок 1), а затем напряжение между рельсом и накладками противоположного рельса Uр1н1 и Uр1н2. Если Uр1н1 <0,5 Uр1  и  Uр1н2 <0,5 Uр1 , то изолирующий элемент исправен. Аналогичные измерения производят с другой стороны изолирующих стыков в соседней рельсовой цепи.

Описание: 14_2

Рисунок 1- Структурная схема проверки изолирующего стыка в

двухниточных рельсовых цепях

При полном пробое изоляции напряжение рельс — накладка противоположного рельса будет равно напряжению между рельсами. В этом случае требуется немедленная переборка изолирующего стыка. Аналогичные измерения производят при провер­ке изолирующего стыка в однониточных рельсовых цепях. При исправном изолирующем стыке напряжение рельс — нак­ладка противоположного рельса Uр1н1 и Uр1н2 должно быть менее половины напряжения между рельсами, т. е. при исправном стыке должны выполняться соотношения Uр1н1<0,5 Up   и Uр1н2 <0,5 Up.

Изолирующий стык в РЦ с дроссель-трансформаторами проверяют по схеме (рисунок 2). При исправном изолирующем элементе справедливы соотношения Uр1н1<0,5 Up; Uр1н2 <0,5 Up; Uр2н1 <0,5 Up; Uр2н2 <0,5 Up.

Сопротивление изоляции в цепи рельс—накладка можно опре­делить методом вольтметра–амперметра, подключив внешний источ­ник питания к рельсу и накладке через амперметр. По соотно­шению U/I определяют сопротивление изоляции.

Описание: 14_4

Рисунок 2- Структурная схема проверки изолирующего стыка в рельсовых цепях с дроссель-трансформатором

На неэлектрифицированном участке неисправный изолирующий стык можно определить, подключив вольтметр между рельсами и кратковременно соединив перемычкой рельсы смежных рельсовых це­пей по диагонали. Уменьшение показания вольтметра в момент подключения перемычки указывает на неисправность стыка.

Аналогично проверяют изоляцию сережек остряков, стяжных по­лос и распорок, арматуры обдувки и обогрева стрелок. Во всех случаях измеряют напряжение между рельсами, а затем между каж­дым рельсом и элементом, изолированным от рельса. Во всех случаях при втором измерении напряжение должно быть ниже, чем при первом (между рельсами).

При профилактических проверках РЦ с железо­бетонными шпалами электромеханик совместно с дорожным масте­ром внешним осмотром должны проверить отсутствие касания клем­мы закладного болта (зазор не менее 10мм), механического разруше­ния резиновой прокладки и ее смещения, ослабления крепления клемм и закладных болтов, загрязнителей в пространстве между за­кладными болтами и клеммами.

При измерении напряжение между рельсами Up должно быть выше напряжения между рельсом и болтом. При полном одно­стороннем пробое эти напряжения будут равны. При двустороннем пробое рельсовая цепь будет закорочена. Зону шпалы с коротким замыканием можно обнаружить с помощью прибора ИСБ-1.

В условиях эксплуатации исправность изолирующих стыков мож­но определить с помощью вольтметра, подключаемого параллельно изолирующему стыку. Отклонение стрелки вольтметра на шкале 0,3 В указывает на исправность изолирующего стыка.

На работу РЦ большое влияние оказывает состояние балласта и шпал. Когда подошва рельса касается балласта или погружена в балласт, сопротивление изоляции может снизиться ниже нормативного значения (1 Ом×км). Расстояние между подош­вой рельсов и балластом должно быть не менее 30 мм и под­держиваться работниками службы пути. Сопротивление изоляции особенно ухудшается на участках пути с асбестовым балластом и деревянными шпалами. Несколько повысить сопротивление изоляции можно за счет очистки боковых поверхностей деревянных шпал.

На участках с железобетонными шпалами сопротивление изо­ляции зависит в основном от свойств и состояния элементов, изо­лирующих рельс от шпалы (резиновые прокладки, изоляционные втулки). Вид и состояние балласта в этом случае проявляются в меньшей степени.

При регулировке рельсовых цепей важное значение имеет пра­вильная оценка удельного сопротивления изоляции. Ранее такая оценка производилась электромехаником субъективно, на основании профессионального опыта и наблюдений, при этом различались следующие состояния изоляции (балласта): мокрый (rи=1 Ом×км), влажный (rи =1—2 Ом×км), сухой (rи =2—5 Ом×км) и сильно промерзший (rи  более 5 Ом×км).

Дистанции сигнализации и связи оснащены измерительными приборами ИСБ-1, позволяющими с достаточной для практики точ­ностью измерять сопротивление изоляции в условиях эксплуатации.

Сопротивление изоляции измеряют прибором ИСБ-1 на частоте 5000 Гц. Так как сопротивление изоляции мало зависит от частоты, то принимается, что измеренное значение справедливо и для всех других частот сигнального тока в рельсовой цепи. Для частоты тока 5000 Гц отрезок рельсовой линии длиной 100—150 м представ­ляет собой электрически длинную линию, входное сопротивление которой равно ее волновому сопротивлению Zвх=Zв. Так как Zв =, то при известном сопротивлении рельсов Z измеренное со­противление определяется сопротивлением изоляции ru=Zв2/Z. По показанию индикатора прибора с помощью таблицы, прилагаемой к нему, можно определить сопротивление изоляции.

Прибором определяют сопротивление изоляции на отдельных участках рельсовой линии, что позволяет обнаружить участки рель­совой цепи с пониженным сопротивлением изоляции и принять меры к улучшению параметров рельсовой линии.

Для оценки среднего сопротивления изоляции на всей рельсовой цепи необходимо сделать несколько измерений и вычислить сред­нее значение:

,

где п - число измерений; rнn - сопротивление изоляции при каждом измерении.

Сопротивление изоляции в пересчете на 1 км длины для двух­ниточных рельсовых цепей должно быть не менее 1 Ом, для одно­ниточных — не менее 0,5 Ом. Сопротивление изоляции проверяет электромеханик совместно с дорожным мастером один раз в год, а также после замены балластного слоя или массовой замены шпал.

Результаты проверки на станции записывает в Журнал техни­ческой проверки устройств СЦБ (форма ШУ-64) электромеханик (при обнаруженных отступлениях от утвержденных норм — электро­механик совместно с дорожным мастером), а на перегоне — в паспорт сигнальной установки (форма ШУ-62) электромеханик. При наличии отступлений от нормы электромеханик совместно с дорожным масте­ром оформляют результаты проверки актом и представляют его начальникам дистанций пути и сигнализации и связи.

Один раз в четыре недели на станции и один раз в шесть не­дель на перегоне электромеханик измеряет напряжение на путевых реле и питающих концах рельсовой цепи, которое должно быть в пределах норм, указанных в нормалях на конкретный тип рельсо­вой цепи. Если измеренное напряжение выходит за пределы до­пустимых значений, его нужно отрегулировать.

Один раз в три месяца на участках с электротягой переменного тока измеряют напряжение асимметрии тягового тока, которое на релейном конце не должно превышать 2,5 В для двухниточных, 5 В для однодроссельных и 15 В для однониточных рельсовых цепей.

Один раз в четыре недели электромеханик совместно с электро­монтером проверяет станционные рельсовые цепи на шунтовую чувст­вительность путем наложения испытательного шунта сопротивлением 0,06 Ом. Шунтовая чувствительность однониточных рельсовых цепей и параллельных ответвлений разветвленных рельсовых цепей, не оборудованных дополнительными путевыми реле, должна проверять­ся один раз в две недели. В наличии шунтового эффекта электро­механик убеждается по отпусканию якоря (сектора) путевого реле до размыкания фронтовых контактов или совместно с дежурным по станции — по индикации занятости путевых участков на табло.

Шунтовая чувствительность значительно зависит от чистоты поверхности головки рельсов, поэтому при проверке необходимо обра­щать внимание на отсутствие ржавчины, слоя льда, песка, шлака или напрессовки снега на поверхность головок рельсов. При нали­чии этих недостатков через начальника дистанции и дорожного мастера необходимо принять меры к их устранению, а в журнале осмотра устройств СЦБ сделать соответствующую запись.

Рельсовая цепь обладает наихудшей шунтовой чувствительностью при высоком сопротивлении изоляции (при промерзшем балласте), так как напряжение на реле в этом случае будет наибольшим. Перед проверкой шунтовой чувствительности следует убедиться в исправности испытательного шунта и наличии на нем отметки о про­верке шунта в РТУ. Получив разрешение ДСП на проверку, электро­механик дает указание электромонтеру о наложении шунта на определенную рельсовую цепь. К проверке следующей цепи прис­тупают только после окончания проверки предыдущей.

Проверку шунтовой чувствительности двухниточных рельсовых цепей выполняют наложением шунта в двух точках — на питающем и релейном концах. В разветвленных цепях шунт накладывают на питающем конце и всех параллельных ответвлениях; в однониточ­ных — через каждые 100 м. В тех случаях, когда из-за ржавчины, обледенения, напрессовки снега и загрязнения головок рельсов воз­никает опасность, что путь или стрелочный участок, занятый подвиж­ным составом, окажется ложно свободным даже при правильно отрегулированной рельсовой цепи, электромеханик должен сделать запись в журнал осмотра о необходимости очистки или обкатки рельсов и дополнительной проверке дежурным по станции фактичес­кой свободности пути или стрелочного участка в порядке, установлен­ном технико-рапорядительным актом (ТРА) станции.

Необходимо учитывать, что шунтовая чувствительность повыша­ется при снижении напряжения источника питания и увеличении сопротивления по концам цепи. Шунтовая чувствительность перегон­ных рельсовых цепей, где рельсы накатаны до блеска и нет от­ветвлений, обеспечивается достаточно надежно, поэтому перегонные рельсовые цепи не проверяют на шунтовую чувствительность. Шунтирование рельсовой цепи проходящими поездами при техническом обслуживании автоблокировки проверяют по смене сигнальных по­казаний на проходных светофорах.

Два раза в год, а также при переключении питающих прово­дов, замене кабеля в рельсовых цепях постоянного тока проверяют чередование полярности тока путем поочередного включения вольт­метра по обе стороны изолирующих стыков; полярность тока в смежных рельсовых цепях должна быть разной. В рельсовых це­пях числовой кодовой автоблокировки 25, 50 и 75 Гц чередование фаз тока в смежных рельсовых цепях не требуется, так как сигналь­ные реле защищены от ложного возбуждения при работе путе­вого реле от источника соседней с помощью схемы дешифраторной ячейки. Действие защиты проверяют при занятой рельсовой цепи и замыкании изолирующих стыков. Сигнальные реле Ж и 3 при этом не должны возбуждаться.

Чередование мгновенных полярностей в рельсовых цепях перемен­ного тока с непрерывным питанием проверяют с помощью вольтметра.

В двухниточных рельсовых цепях переменного тока без дроссель-трансформаторов чередование фаз проверяют измерением напряже­ния (рисунок 3).

Если U3>U1 и U3>U2, то чередование сде­лано правильно. В этой схеме при первом и втором измерениях определяют напряжения в рельсовых цепях 1п и 2п, а при третьем — по обе стороны любого изолирующего стыка, что и обусловливает приведенные выше соотношения напряжений. Указанные неравенства проявляются в наибольшей степени, если напряжения в смежных рельсовых цепях примерно одинаковы, что имеет место в случае раз­мещения на стыках смежных цепей однотипных приборов. Если же на стыке размещают разнотипные приборы, то эти неравенства про­являются менее резко, так как напряжение на питающем конце зна­чительно превышает значение напряжения на релейном конце, осо­бенно в длинных цепях.

Описание: 14_5

Рисунок 3- Схемы проверки чередования фаз

В смежных рельсовых цепях с дроссель-трансформаторами (рисунок 3, б) при измерении напряжения Uз складываются напря­жения на полуобмотках дроссель-трансформаторов, средние точки которых объединены. Напряжения U1 и U2 измеряют в противо­положных рельсах смежных рельсовых цепей. Напряжение U3 долж­но быть больше каждого из напряжений U1 или U2, т. е. чередование фаз выполнено правильно, если U3>U1 и U3>U2. В однониточных рельсовых цепях (рисунок 3, в) при правильном чередовании фаз должны выполняться неравенства U3<.U1 и U3<U2. При стыковании двух однониточных или двух двухниточных рельсовых цепей, пита­емых от одной фазы, чередование полярности разрешается проверять индикатором проверки чередования полярности ИПЧП.

Два раза в год электромеханик совместно с электромонтером должен измерять кодовый ток АЛСН. Кодовый ток в рельсах входного конца должен быть не менее 1,2 А на участках с автономной тягой; 2 А на участках с электротягой постоянного тока и 1,4 А на участках с электротягой переменного тока. В рельсовых цепях переменного тока, кодируемых с питающего конца, в процессе эксплуатации нет необходимости измерять ток АЛСН, его нормативное значение должно обеспечиваться, если напряжение на путевом реле соответствует установленным нормам. Поэтому ток АЛСН нужно измерять только при кодировании с релейного конца и в рельсовых цепях постоянного тока, в которых переменный ток применяют только для работы АЛСН.

В рельсовых цепях без дроссель-трансформаторов ток АЛСН можно измерять непосредственно амперметром, включая его между рельсами по шкале не менее 3 А. Чем меньше внутреннее сопро­тивление амперметра, тем точнее результат измерения. Если внутрен­нее сопротивление амперметра не более 0,1 Ом, погрешность из­мерения не превышает 5 %.

В рельсовых цепях с дроссель-трансформаторами, особенно с низ­ким сопротивлением (ДТ-0,2), сопротивление основной обмотки дрос­сель-трансформатора сравнимо с внутренним сопротивлением ампер­метра, что приводит к снижению значения измеренного тока по сравнению с фактическим. Поэтому в этих рельсовых цепях кодовый ток измеряют, подключая амперметр к дополнительной обмотке дроссель-трансформатора.

Ток АЛСН:

,

где п — коэффициент трансформации.

Кодовый ток может быть измерен также с помощью нормативного шунта и вольтметра. Измерив напряжение на шунте Uш, наложен­ном на рельсы, определяют ток АЛСН:

.

Ток АЛСН можно измерять косвенно индукционным методом с помощью клещей Ц-91. Ток АЛСН на локомотиве измеряют вольт­метром с большим внутренним сопротивлением, подключенным к локомотивным катушкам.

Зная соотношения между током в рель­сах и напряжением, наводимым на приемных катушках при различ­ных частотах сигнального тока, определяют кодовый ток. Точность измерения в последних двух случаях невысока.

При всех способах измерения инерционность стрелки измеритель­ных приборов приводит к погрешности измерений. Приборы с меха­ническими арретирами также дают погрешность, поскольку установ­ка арретира зависит от субъективных факторов. Поэтому нужно вводить поправочные коэффициенты для определения истинного значения тока, причем эти коэффициенты для разных типов приборов различны. Они зависят от передаваемого кода (КЖ, Ж или 3). Более точно можно измерить ток АЛСН, используя различные приставки к приборам. Принцип действия приставок основан на накоплении конденсатором энергии измеряемых импульсов.

В некоторых случаях оказывается возможным измерять непре­рывный ток АЛСН, шунтируя, например, контакт трансмиттерного реле, однако это связано с дополнительными трудностями, пос­кольку измерение должны производить два лица.

Два раза в год электромеханик совместно с электромонтером проверяют также состояние кабельных стоек и путевых коробок.

Их окраску и заливку кабельной массой производят по мере на­добности. При проверке дроссель-трансформаторов обращают вни­мание на уровень масла и отсутствие в нем воды, а также сообще­ний обмоток с корпусом, надежность крепления перемычек дросселя к выводам; масло должно закрывать ярмо дросселя. Коэффициент трансформации дроссель-трансформатора ДТ-0,2 на релейном конце должен быть равен 17, т. е. включены зажимы 2 и 4 дополнительной обмотки.

Если в корпус дроссель-трансформатора попала вода, то масло сливают, обмотки просушивают и вновь заливают масло. Отсутствие сообщения между основной обмоткой и корпусом проверяют по от­клонению стрелки, а сопротивление изоляции дополнительной об­мотки относительно корпуса (для вновь устанавливаемого дроссель-трансформатора норма 25 МОм) — мегаомметром. Периодически перебирают и зачищают зажимы дроссельных перемычек и выводы дроссель-трансформаторов, так как в месте контакта со временем появляются окислы и загрязнения, повышающие переходное сопро­тивление, что может привести к их перегреву и выходу из строя.

К обычным рельсам соединители приваривают электродуговым, термитным или газопламенным способом. Соединители приваривают к боковой нерабочей грани головки рельса на расстоянии 40 мм от торца так, чтобы их верх был на 15 мм ниже поверхности катания рельса. Необходимым условием надежной приварки соединителей яв­ляется обязательная зачистка в месте приварки рельсов и обжимного наконечника до металлического блеска.

Один раз в две недели электромонтер проверяет стыковые, стре­лочные, междупутные и электротяговые соединители, перемычки от кабельных стоек, путевых ящиков и дроссель-трансформаторов. При осмотре проверяют исправность соединителей и перемычек, надеж­ность крепления троса в месте соединения с наконечниками и штеп­селями, а также крепления их к рельсам и выводам дроссель-транс­форматоров; правильность установки стыковых соединителей и сос­тояние мест приварки; правильность укладки и крепления перемычек и междупутных соединителей.

Надежность крепления штепселя к шейке рельса проверяют легким простукиванием молотком головки штепселя сбоку или с тор­ца. Штепсель стыкового соединителя должен выходить на другую сторону шейки рельса, но не должен быть забитым до основания. Болтовое крепление штепселей должно иметь контргайки или пру­жинные шайбы.

Перемычки от путевых ящиков, кабельных стоек, дроссельные пе­ремычки должны быть прикреплены к шпалам металлическими ско­бами из проволоки диаметром 4—5 мм. Перемычки в местах перехода под рельсом крепят ниже подошвы рельса на 30—50 мм. У рельсов пе­ремычки укладывают с запасом на случай угона рельса. Для исклю­чения коррозии стальные перемычки и соединители должны быть очи­щены от грязи и смазаны.

При осмотре изолирующих стыков следует проверить наличие торцевой прокладки, отсутствие наката в торцевом зазоре. Толщина торцевой прокладки должна составлять 5—8 мм. Боковые изолирую­щие прокладки должны быть целыми и выступать на 4—5 мм из-за металлических накладок. Элементы изолирующего стыка должны быть очищены от грязи, мазута, металлической пыли и т. п. Произво­дят аналогичный осмотр и проверку изоляции сережек, стяжных по­лос, стрелочных гарнитур и арматуры обдувки стрелочных переводов. Изолирующие прокладки должны быть исправными, очищенными от грязи и надежно закрепленными. Все изолирующие детали должны иметь типовые формы и размеры.

Заземления устройств СЦБ, присоединяемые к рельсам или сред­нему выводу дроссель-трансформатора, должны быть правильно уло­жены и надежно закреплены, заземляющие проводники должны быть изолированы от балластного слоя. Изоляция достигается уклад­кой их на полушпалах, а также покрытием по всей длине проводника кузбаслаком. Присоединение релейного шкафа и мачты светофора должно быть выполнено стальным круглым проводником диаметром не менее 12 мм.

Внешним осмотром проверяют наличие зазора между подошвой рельса и балластом. При деревянных шпалах зазор должен быть 30 мм; при железобетонных шпалах верхняя поверхность балластного слоя должна быть на одном уровне с верхней поверхностью средней части шпал.

Синьхайская революция 1911-1912 и ее значение - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.

Описание: 14_3

Рис. 14.3. Структурная схема проверки изолирующего стыка в однониточных р.ц.

Исправность искровых промежутков, через которые контактные опоры подсоединяются к рельсам один раз в 3 месяца проверяют электромеханик совместно с работниками контактной сети по нали­чию напряжения на искровом промежутке, возникающем под дейст­вием тягового тока. Вольтметр на шкале 100 или 50 В подключают к выводам промежутка. Если при прохождении поездов по участку стрелка вольтметра отклоняется, то искровой промежуток испра­вен. Неисправные искровые промежутки подлежат замене, так как это может послужить причиной нарушения нормальной работы рельсовой цепи.

Перед установкой новых искровых промежутков их проверяют мегаомметром на отсутствие в них короткого замыкания и соот­ветствия уровня пробивного напряжения требуемому (800—1200 В). В изолирующих стыках проверяют наличие изолирующих прокладок, зазор между торцами рельсов должен быть не менее 5 мм.

Данные измерений электромеханик записывает в паспорт сиг­нальной установки (ШУ-62) или в Журнал технической проверки устройств СЦБ на станции (ШУ-64).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее