Популярные услуги

Главная » Лекции » Транспорт » Автономный транспорт » Характеристики дизелей, газотурбинных установок

Характеристики дизелей, газотурбинных установок

2021-03-09СтудИзба

В четырёхтактном дизеле полный рабочий цикл соответствует повороту коленчатого вала теплового двигателя на 7200. диаграмма рабочего цикла такого дизеля приведена на рис. 2.5, где пунктиром нанесена диаграмма теоретического цикла.

Ориентировочные параметры рабочего цикла характеризуются значениями:

pz 45…60 атм;     Tz ≈2300…27000К;

рс ≈28…40 атм;     Тс ≈800…9000К.

Впускной и выпускной клапаны управляются от распределительного вала. Последовательность тактов в каждом из цилиндров дизеля одинакова, а сами такты сдвинуты на угол

где z – количество цилиндров дизеля.

Применительно к рисунку 2.5 такты чередуются в следующем порядке:

– всасывание воздуха при открытом впускном клапане по линии la;

Рекомендуемые материалы

– сжатие воздуха на участке as при закрытых клапанах. В точке s впрыскивается топливо и начинается его горение в процессе сжатия до точки с′;

– от точки с′ начинается процесс расширения горящей смеси, сопровождающийся повышением давления до точки e;

– от точки e до точки d продолжается горение смеси при практически постоянном давлении в надпоршневом пространстве;

– от точки d до точки х продолжается догорание остатков смеси и расширение объёма продуктов сгорания при понижении давления вплоть до точки в′.;

– от точки в′ до точки о происходит расширение продуктов сгорания. Линия cedxв′о соответствует полезной работе, а этот такт называется рабочим тактом;

– от точки о до точки l происходит выброс отработавших газов в атмосферу при открытом выпускном клапане;

– от точки l до точки а′ происходит всасывание в цилиндр атмосферного воздуха.

В теоретическом цикле всасывание воздуха в цилиндр и выхлоп отработавших газов осуществляется при одинаковом давлении p=pатм; кривая р(v) при сжатии воздуха описывается политропой рvк=const; сжигание топлива происходит сначала с повышением давления при постоянном объёме v=const, а затем – при постоянном давлении p=const; расширение газов описывается политропой pvк=const.

Отклонение реального рабочего цикла от теоретического происходит вследствие:

– задержки воспламенения и распространения пламени по объёму цилиндра;

– теплообмена между цилиндром и окружающей средой;

– гидравлического сопротивления клапанов (на рисунке работа по преодолению гидравлических потерь характеризуется заштрихованной площадью).

Вследствие отклонения реального рабочего процесса от теоретического (расчётного) площадь диаграммы p(V) уменьшается, что свидетельствует об уменьшении полезной работы.

В двухтактном дизеле полный рабочий цикл соответствует повороту коленчатого вала на 3600. В двухтактных дизелях с клапанно-щелевой продувкой цилиндров (см. рис. 2.6) нагнетание воздуха осуществляется через щели, расположенные вблизи нижней мёртвой точки (НМТ) под давлением р=(1.3…1,6)∙105 Па. Применительно к рис. 2.6 такты чередуются в следующем порядке:

– на линии la закрываются щели;

– на линии ас происходит сжатие воздуха;

– в точке с происходит впрыскивание топлива и начинается процесс горения, сопровождающийся повышением давления по линии ce;

– на линии ed продолжается горение топлива в процессе расширения смеси;

– на линии dв продолжается догорание остатков смеси и расширение объёма продуктов сгорания при понижении давления;

– на линии вl происходит выталкивание продуктов сгорания.

Отдельные процессы рабочего цикла двухтактного дизеля описываются кривыми, аналогичными кривым четырёхтактного дизеля (политропы, изобары, изохоры).

Применительно к рис. 2.6 геометрическая степень сжатия

,

а действительная степень сжатия

В двухтактных двигателях с цилиндрами такого типа из-за наличия окон теряется часть хода поршня, но зато по сравнению с четырёхтактными у них вдвое чаще происходит рабочий ход. Поэтому при равных размерах цилиндра и одинаковых параметрах рабочего цикла теоретическая мощность двухтактного дизеля по сравнению с четырёхтактным выше в 1,7…1,8 раза. Однако вследствие несколько низшей степени сжатия и худшей продувке цилиндра воздухом, что вызывает необходимость снижения подачи топлива, реальная мощность двухтактного выше в 1,5…1,7 раза по сравнению с четырёхтактным.

Основные характеристики тепловозных дизелей представляют собой зависимости эффективной мощности Ne, крутящего момента Мд, эффективного КПД ηе и удельного расхода топлива ge от угловой скорости коленчатого вала п. Они определяются параметрами рабочего процесса. К этим параметрам относятся:

коэффициент полноты индикаторной диаграммы, характеризующий отношение площади реальной индикаторной диаграммы к площади расчетной p(V) диаграммы. Применительно к рис. 1.12 этот коэффициент определится отношением

Величина коэффициента полноты индикаторной диаграммы зависит от показателя политропы, давлений впуска и выпуска, организации процессов распыливания и горения, фаз распределения;

коэффициент наполнения, представляющий собой отношение

,

где G — действительное количество воздуха, заполнившего цилиндр к началу сжатия; Gh – количество воздуха в установившемся состоянии, т. е. если давление впуска равно ра и температура равна Та.

Практически давление впуска всегда меньше ра на величину Δ рв, которая обусловлена гидравлическими потерями и пропорциональна квадрату скорости воздуха на впуске Δ рвVв2;

коэффициент избытка воздуха

,

где G0 — количество воздуха, теоретически необходимое для полного сгорания всего впрыскиваемого топлива при условии идеального смесеобразования и горения. Коэффициент избытка воздуха должен быть по возможности минимален, но таков, чтобы обеспечить действительно полное сгорание всего топлива. Он зависит от качества процесса смесеобразования, т. е. от качества распыления топлива и перемешивания его с воздухом;

средне индикаторное давление

где к2 – показатель политропы при расширении газов; к1 – показатель политропы при сжатии воздуха в цилиндре.

Действительная величина среднего индикаторного давления четырёхтактного дизеля

индикаторная мощность дизеля зависит от количества цилиндров z, количества тактов τ и угловой частоты n:

индикаторный КПД представляет собой отношение теплоты, преобразованной в работу в цилиндре дизеля, к затраченной теплоте

;

эффективная мощность на валу дизеля

меньше индикаторной на величину потерь в двигателе ΔNП, которые включают:

а) насосные потери при впуске, выпуске и перетекании газов;

б) потери на трение поршней и подшипников;

в) расход энергии на привод вспомогательных устройств, распределительного вала, топливного, масляного и водяного насосов и др.

Приближенно сумма потерь может быть оценена как

где  – коэффициент пропорциональности; Вч хх – часовой расход топлива на холостом ходу; Вч ном – часовой расход топлива при номинальной мощности дизеля; т=1,5…1,6;

механический КПД

.

термический КПД дизеля

При одноцилиндровом исполнении крутящий момент дизеля непрерывно меняется по величине и направлению, что при малой массе вращающихся частей привело бы к колебанию угловой скорости. Колебания практически устраняются применением многоцилиндровых двигателей (z ≥ 4) и массивного ма­ховика.

При механической передаче роль маховика в процессе движения играет масса поезда, а при электрической передаче достаточно массивным маховиком является якорь генератора.

Крутящий момент может быть определен из равенства

где ω=2πп – угловая скорость вращения вала дизеля.

Отсюда крутящий момент

.

Одной из главных особенностей дизеля является то, что подача воздуха в цилиндры в процессе работы не регулируется, некоторое её изменение определяется гидравлическими потерями на входе и выходе, а также динамической слагающей напора.

На рис. 2.7 представлены зависимости ряда рабочих параметров дизеля от угловой частоты при полной и постоянной подаче топлива.

Коэффициент наполнения ηv вначале растет в связи с увеличением динамической слагающей напора, достигает максимума, а затем начинает падать вследствие все более значительного роста гидравлических потерь. Коэффициент избытка воздуха α изменяется аналогично и по тем же причинам. Поэтому отношение ηv /α остается приблизительно постоянным. Уменьшение α сначала благоприятно влияет на параметры термодинамического цикла, но затем препятствует полному сгоранию топлива и приводит к дымлению.

Минимальная устойчивая угловая скорость nмин зависит главным образом от качества распыления топлива, которое ухудшается по мере снижения скорости, а также от утечек и тепловых потерь в процессе сжатия, возрастающих при снижении скорости. Эти причины приводят к невозможности обеспечить надежное воспламенение и горение смеси при скорости n < nмин.

Индикаторный КПРД ηi растет с увеличением скорости главным образом за счет повышения качества распыления топлива, а механический КПД ηм уменьшается вследствие роста механических и гидравлических потерь.

Индикаторный КПД ηi растет с увеличением скорости главным образом за счет повышения качества распыливания топлива, а ме­ханический КПД ηм уменьшается  вследствие роста механических и гидравлических потерь.

Если при повышении скорости вращения увеличивать подачу топлива, то коэффициент избытка воздуха будет уменьшаться быстрее и предел по дымлению наступит раньше, несмотря на улучшение распыливания, а кривая зависимости ηv /α будет иметь падающий характер.

Применение наддува позволяет при желании по мере увеличения частоты вращения повышать коэффициент наполнения и поддерживать коэффициент избытка воздуха на необходимом уровне.

Наддув дает возможность повысить мощность и к. п. д. при высоких значениях угловой скорости.

На рис. 2.8 приведены примерные внешние характеристики дизеля. В условиях работы на транспорте от дизеля далеко не всегда требуется полная мощность, соответствующая условиям работы по внешней характеристике. Очень часто приходится использовать неполную мощность, которой соответствуют уменьшенная подача топлива и частичные характеристики, общий вид которых показан на рис. 2.9.

Частичные характеристики получают отсечкой подачи топлива в топливном насосе. При использовании частичных характеристик коэффициент наполнения не меняется. В связи с пониженной подачей топлива растет коэффициент избытка воздуха. Предел по дымлению в этом случае отодвигается, и по процессу горения возможна работа при скорости, большей, чем максимальная. Однако в этом случае возрастут гидравлические и механические потери и снизится эффективный к. п. д.

Газовая турбина может рассматриваться как обращенный компрессор. Если компрессор превращает механическую работу в энергию сжатого газа с неизбежными тепловыми потерями в процессе превращения, то турбина превращает энергию сжатого газа в меха­ническую работу, причем повышение давления сжатого газа получается предварительным сжатием и подводом тепла до входа его в газовую турбину. Этот процесс связан также с неизбежными тепловыми потерями.

Турбины могут быть радиальными (центростремительными) или осевыми. По конструкции они подобны компрессорам, но имеют расширяющуюся  по ходу газа проточную часть и отличаются формой лопаток. Турбины (в некоторой мере условно) разделяют на активные и реактивные. Активными турбинами называют такие, в которых используются центробежные силы, возникающие при протекании струй газа по криволинейному каналу, образованному  рабочими лопатками. В таких турбинах преобразование потенциальной энергии газа в кинетическую происходит только в направляющих лопатках, а на рабочих лопатках давление остается примерно постоянным. Диаграмма рабочего процесса осевой турбины приведена на рис. 2.10. В направляющем колесе турбины сечение канала сужается, что ведет к повышению скорости газа (v1 > v0) и снижению давления(p1,<po). Одновременно изменяется направление скорости газа, что ведет к появлению окружной слагающей скорости. Потенциальная энергия газа преобразуется в кинетическую.

На лопатках рабочего колеса давление и относительная скорость по величине не меняются (p1p2) и (ω 1≈ ω2), но меняется направление скорости, в результате чего кинетическая энергия газов совершает механическую работу.

Реактивными называют турбины, в которых преобразование потенциальной энергии газа в кинетическую происходит не только на направляющих, но и на рабочих лопатках одновременно с преобразованием кинетической энергии в механическую работу. Диаграмма рабочего процесса реактивной осевой турбины приведена на рис. 2.11.

В отличие от активной в реактивной турбине преобразование потенциальной энергии газа в кинетическую осуществляется не только на направляющих, но и на рабочих лопатках. Здесь сужение канала вслед за направляющим продолжается и в рабочем колесе. Это ведет к увеличению относительной скорости (ω2 > ω1). Поэтому расширение газа и падение давления происходят и в рабочем колесе. На лопатки рабочего колеса действует не только окружная, но и осевая сила, которая образуется разностью давления по обе стороны рабочего колеса.

На рис. 1.12 приведена принципиальная схема осевой многоступенчатой газовой турбины. Для ее конструкции характерна постепенно расширяющаяся от входа к выходу проточная часть между корпусом 1, на котором укреплены направляющие лопатки 4, и ротором 2, несущим на себе рабочие лопатки 5.

Газовые турбины, так же и как и компрессоры, выполняются многоступенчатыми. При прочих равных условиях число ступеней в турбине может быть существенно меньше, чем у компрессора. Это определяется отсутствием опасности возникновения помпажа при суживающихся каналах. Степень изменения давления в одной ступени турбины может быть допущена примерно вдвое более высокой, чем в компрессоре (2—2,5 вместо 1,1—1,3).

Реактивная турбина обладает несколько большей приспособляемостью к нагрузке по сравнению с активной. Ее крутящий момент при снижении угловой скорости растет быстрее. К. п. д. с изменением скорости у реактивной турбины меняется относительно менее резко.

Примерные относительные характеристики активной и реактивной осевых турбин приведены на рис. 2.13.

Газовые турбины отличаются от дизелей существенно более узким диапазоном угловых скоростей, при которых возможна работа с высокой экономичностью.

В отличие от дизеля, в котором рабочие циклы чередуются во времени в одном и том же рабочем пространстве, в газотурбинной установке рабочий процесс непрерывен во времени, но разделен в пространстве. Здесь воздух сжимается в компрессоре и направляется в турбину через камеру сгорания, где к нему подводится тепло. Работа расширения происходит в турбине, от вала которой может быть получена полезная механическая работа.

Схема простейшей одновальной разомкнутой газотурбинной установки представлена на рис. 2.14. Многоступенчатый осевой компрессор К сжимает воздух (обычно до πк = 5…6), который поступает в камеру сгорания. Одновременно в нее через форсунку Ф топливный насос ТН подает топливо, которое сгорает при температуре 1800…20000С. Для лопаток турбины Т такая температура недопустима, поэтому продукты горения смешиваются с избыточным воздухом и температура смеси снижается до 600…8000С. Схема камеры сгорания представлена на рис. 2.15. Подаваемый в огневое пространство 2 камеры сгорания через завихритель 4 воздух смешивается с топливом, впрыскиваемым через форсунку 1. После сгорания в пространстве 3 происходит охлаждение продуктов сгорания путём смешивания с воздухом, после чего они подаются в турбину. Коэффициент избытка воздуха в жаровой трубе камеры сгорания составляет обычно αвн ≈1,7…2,5, в то время как общий коэффициент избытка воздуха α0 ≈5…10.

Диаграмма теоретического цикла газотурбинной установки приведена на рис. 2.16. Здесь линия аd характеризует процесс сжатия воздуха в компрессоре; cdгорение при р=const; cb расширение продуктов горения в турбине.

Площадь adef в определенном масштабе представляет собой работу, затраченную на сжатие воздуха в компрессоре. Площадь вcef в том же масштабе соответствует работе, выполненной турбиной. Разность этих двух площадей aвcd определяет полезную работу Н (см. рис. 2.16) газотурбинной установки.

Термический КПД теоретического цикла газотурбинной установки, если принять, что сжатие и расширение происходят по адиабате (dq = 0; q = 0),

                                                 (2.11)

где Ат – работа расширения в турбине; Ак – работа сжатия в компрессоре; q1 – тепло, подведенное к газу в процессе сгорания топлива.

Давление в процессе горения постоянно. Следовательно, рс = pz = const и в соответствии с обозначениями на рис. 1.21

                       (2.12)

Работа сжатия в компрессоре

                  (2.13)

Работа турбины

                    (2.14)

В процессе работы меняется объем, поэтому для расчета нельзя применить Сp. Но с изменением давления меняется и Ср, поэтому в расчетах принимается для Ср некоторое среднее значение.

Подставляя в уравнение (2.12) значения из формул (2.13) и (2.14), получим

Используя уравнение адиабаты

и, обозначив , после введения

получаем  и

где .

В действительности процессы сжатия и расширения происходят по политропе, а не по адиабате, и часть тепла теряется. Кроме того, имеют место и гидравлические потери в газе в процессе сжатия, расширения и перетека­ния. Все это приводит к тому, что площадь индикаторной диаграммы меньше площади теоретической р(V) диаграммы. В результате уменьшаются полезная мощность и КПД.

Индикаторный КПД ηt может быть определен по формуле

,

где ηт ≈ (0,87…0,9) и ηк ≈ (0,85…0,88) – внутренние КПД турбины и компрессора соответственно.

Индикаторная мощность ГТУ

.

Эффективная мощность ГТУ Ne=ηм NT ,

где ηм ≈ (0,97…0,98) механический КПД ГТУ.

Теоретическая мощность компрессора составляет около 2/3 мощности турбины, а мощность на выходном валу ГТУ равна около 1/3 мощности турбины. Значения внутренних и механического КПД сильно влияют на выходную мощность и общий КПД ГТУ. Существенно влияет на мощность и КПД ГТУ температура воздуха перед компрессором. На рис. 2.17 за единицу приняты значения, отвечающие температуре окружающей среды 20° С.

Стремление к дальнейшему совершенствованию газотурбинных установок при ограниченной по условиям прочности лопаток температуре газа на входе в турбину привело к созданию более сложных их схем. Были созданы установки с регенераторами тепла отходящих газов, а также двухступенчатые установки с промежуточными охладителями между компрессорами и промежуточными нагревателями между турбинами. Такое выполнение установок способствует снижению потерь тепла и приближению процессов сжатия и расширения к адиабатическим, а, следовательно, и к повышению КПД. Однако регенераторы и промежуточные охладители представляют собой теплообменники с относительно низкими разностями температур и большой поверхностью теплообмена. Они требуют значительного места, которое не всегда может быть предоставлено на локомотиве.

На рис. 2.18 приведена схема одновальной ГТУ с регенерацией тепла. Здесь воздух, сжатый компрессором, прежде чем поступить в камеру сгорания, проходит через регенератор Р, в котором он подогревается, отбирая тепло у отработавших в турбине газов.

На рис. 2.19 представлена р(V) диаграмма цикла. В теоретическом цикле давление не меняется, а лишь увеличивается объем воздуха вследствие повышения температуры. Регенерация возможна, если Тв > Тa, и позволяет уменьшить количество подводимого тепла q1 за счет тепла, подведенного от регенератора qp, при сохранении температуры Тс на входе в турбину, т. е. уменьшить расход топлива на выполнение равной работы. Следовательно, регенерация повышает КПД установки

Теоретически максимальное количество тепла, которое может быть передано 1 кг воздуха в регенераторе, составляет

Однако в этом случае поверхность регенератора должна быть бесконечно велика. В действительности всегда Тв должна быть больше, чем TCl; qp = Cp(Tdl – Тd).

Степенью регенерации называют величину

Обычно в практике φ ≈ 0,5…0,6. Термический КПД цикла с регенерацией тепла

Индикаторный КПД для этого случая

При отсутствии регенерации приближенно можно считать, что

Для осуществления цикла с промежуточным охлаждением и подводом тепла (рис. 2.20) необходимы два компрессора и две турбины. Воздух, нагретый в процессе сжатия в компрессор К1 от температуры Та до Tе1, охлаждается в промежуточном охладителе ПО до температуры Tе. Тем самым уменьшается работа сжатия в компрессоре К2, а также улучшаются условия регенерации вследствие относительного снижения Тd. На. рис. 2.21 видно, что площадь p(V) диаграммы возрастает на величину dd1e1e. Процесс сжатия становится более близким к адиабатическому. Для этой же цели – приближения процесса к адиабатическому – целесообразно и турбину разделить на две части: Т1 и Т2. В процессе расширения газа в турбине Т1 его температура понижается с Tc до Тf. В промежуточной камере сгорания КС2 она вновь может быть повышена до предельной, допустимой по долговечности лопаток, температуры Tcl = Tc. Тем самым увеличивается полезная работа турбины (площадь fc1bb1 на рис. 2.21) и ее КПД.

Промежуточный подвод тепла и промежуточное охлаждение позволяют увеличить КПД установки в 1,2—1,25 раза. Каждая из этих мер, примененная в отдельности, повышает к. п. д. в 1,1 — 1,12 раза. Промежуточный охладитель по размерам при равной эффективности существенно меньше регенератора вследствие большей разности температур теплообмена.

В лекции "5 Эпилепсия с миоклонически-астатическими приступами" также много полезной информации.

В одновальных газотурбинных установках момент на выходном валу всегда равен разности моментов турбины и компрессора (рис. 2.22)

МдТ - МК.

Момент компрессора, как гидравлической машины, сжимающей воздух, пропорционален квадрату угловой скорости установки. Момент турбины и характер его изменения от угловой скорости зависят от способа подачи топлива. МT1, характеризует изменение момента турбины при постоянной подаче топлива (G=const). По мере роста частоты вращения вала компрессор увеличивает подачу воздуха. Смесь обедняется и момент падает. Снижение скорости для увеличения момента возможно лишь до ограничения Tс макс (рис. 2.23). Режим при Tс макс, очевидно, окажется и наиболее экономичным, так как при изменении скорости и отходе от этого режима меняется коэффициент избытка воздуха.

МТ соответствует условиям подачи топлива, пропорциональной угловой скорости турбины (G≡п), а следовательно, и пропорциональной подаче воздуха. Здесь коэффициент избытка воздуха, температура на лопатках и КПД практически стабильны.

Экономически целесообразна работа одновальной ГТУ по линии наибольшей экономичности, когда МТ меняется существенно более резко, чем в прямой пропорциональности от скорости. Установка должна быть спроектирована так, чтобы ограничения по температуре газа на входе в турбину и помпажу в компрессоре не препятствовали возможности работы в режимах, расположенных на линии наибольшей экономичности.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее