Популярные услуги

Главная » Лекции » Математика » Теория случайных процессов » Точечные случайные процессы. Формула Ито для считающих процессов. Компенсаторы

Точечные случайные процессы. Формула Ито для считающих процессов. Компенсаторы

2021-03-09СтудИзба

§6 Точечные случайные процессы. Формула Ито для считающих процессов. Компенсаторы.

6.1. Определение. Пусть на стохастическом базисе задана последова­тельность марковских моментов, которую мы будем называть точечным процессом, если выполняются условия: а),

б) Р - п. н.  для , в) существует Р - п. н. 

Точечный процесс часто называют моновариантным процессом, процессом накопле­ния или считающим процессом. Это связано со следующим обстоятельством.

Определим процесс следующим образом: , где - последовательность марковских моментов, фигурирующая в определении то­чечного процесса, и назовем его считающим процессом. Ясно, что процесс согласо­ван с фильтрацией, имеет кусочно-постоянные траектории, которые непрерывны справа и имеют левый предел. Поэтому в силу теоремы 19 он опционален и имеет конечное число скачков  () нa конечном интервале. Из определения счита­ющего процесса следует, что  для и при , поэтому он имеет:

а) ограниченную вариацию, б) является субмартингалом так как . Из сказанного выше следует, что между точечным и считающим процессом существует взаимно однозначное соответствие, так как - опциональные марковские моменты обладают следующими свойствами: а) ,  б) Р - п. н.  для ,

в) существует  Р - п. н. Так как - субмартингал, то в силу теоремы Дуба - Мейера справедливо единственное разложение

Р - п. н.    для , где  - предсказуемый возрастающий процесс, а - мартингал, относительно меры Р.

Рекомендуемые материалы

6.2. Определение. Предсказуемый возрастающий процесс назовём - компенсатором считающего случайного процесса , если - мартингал относительно потока и меры Р.

Пример. Пусть - пуассоновский процесс с интенсивностью. Тогда его компенсатором является процесс.

6.3. Для формулировки дальнейших результатов нам понадобится  конструкция интеграла Римана - Стилтьеса. Напомним ее. Пусть  - непрерывная слева функция, а - непрерывная справа функция ограниченной вариации. Пусть  - разбиение отрезка [0,T], т. е., причём  при . Составим интегральную сумму. Если при

эта сумма стремиться к некоторому пределу, не зависящему от выбора способа разбиения отрезка [0,T], то этот предел называется интегралом Римана - Стилтьеса функции j по функции ограниченной вариации x и обозначается символом . Очевидно следующее утверждение.

Теорема 25. Если - предсказуемая функция на [0,T], а , то интеграл Римана - Стилтьеса существует.

Приведём без доказательства ряд свойств этого интеграла:

1) ;

2) если , где , то;

3) если , где  - предсказуемые функции, а , то ;

4) .

6.4. Перейдем теперь к формулировке формулы Ито для считающего процесса.

Теорема 26. Пусть - измеримая ограниченная функция, a  - считающий процесс. Тогда P - п. н.

,                                 (4)

где интеграл, стоящий в правой части (4), понимается в смысле Римана - Стилтьеса.

Доказательство.  - это марковские моменты , которые исчерпывают скачки процесса . Так как траектории процесса  кусочнопостоянны, то справедливы равенства:                

 

.

Учтем, что , имеем

.

Так как  , гдe , то процесс - предсказуем. В результате имеем (4). Доказательство закончено.

Пример (применения формулы Ито). Вычислим интеграл Римана - Стилтьеса .

Пусть. Из (4) имеем .

Отсюда следует, что .

6.5. Определение. Квадратической вариацией опционального процесса , обозначаемая через называется случайный процесс .

Если , то квадратическая вариация процесса  является субмартингалом относительно меры Р и потока . Действительно, если , то. Отсюда P - п.н. Поэтому, в силу теоремы Дуба - Мейера существует единственный предсказуемый процесс, обозначаемый через  называется характеристикой такой, что является мартингалом относительно меры Р и потока .

Пример. Вычислим квадратическую вариацию и характеристику точечного процесса .

1) . Так как , то имеем .

2), где - компенсатор точечного процесса .

6.6. Определение. Взаимной вариацией опциональных процессов и , обозначаемая , называется опциональный процесс, определяемый равенством .

Теорема 27. Пусть существуют и. Тогда существует .

Рекомендация для Вас - 12.4 Социально-экономическое развитие страны в пореформенный период.

Доказательство следует из равенства

.

Следствие 28. Пусть имеется два опциональных процесса, имеющих ограниченную вариацию и. Тогда справедливо равенство P - п.н. .

Докажите самостоятельно.

6.7. Определение. Взаимной характеристикой квадратично-интегрируемых мартингалов и (относительно потока  и меры Р) называется предсказуемый случайный процесс обозначаемый через такой, что  является мартингалом относительно потока и меры Р.

Заметим, что существование процесса следует из теоремы Дуба - Мейера.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее