Популярные услуги

Задача о наилучшем приближении

2021-03-09СтудИзба

Часть 1             Ряды Фурье.

Этот раздел может быть перенесен в третий семестр как продолжение темы «Функциональные ряды». Но часто в третьем семестре не хватает времени, поэтому материал может быть изложен и в четвертом семестре.

Лекция 1.

 

Задача о наилучшем приближении.

Задача о наилучшем приближении в Rn.

Поставим задачу – приблизить наилучшим образом вектор трехмерного пространства вектором v в двухмерном пространстве - плоскости.

Ясно, что интуитивно наилучший выбор v – ортогональная проекция вектора u на эту плоскость. Пусть e1 , e2 – ортогональные  базисные векторы, а плоскость – их линейная оболочка,   тогда      v =C1 e1 +C2 e2. Остается найти коэффициенты разложения C1, C2.

Рекомендуемые материалы

Если v – ортогональная проекция вектора u на плоскость, то вектор u – v ортогонален плоскости, следовательно, ортогонален и базисным векторам. Тогда

0 = (u --v, e1) =([u – (C1 e1 +C2 e2)], e1) = (u, e1) – C1 (e1, e1), 

0 = (u --v, e2) =([u – (C1 e1 +C2 e2)], e2) = (u, e2) – C2 (e2, e2),  .

Здесь (e1, e2) = 0, так как базисные векторы ортогональны.

Аналогично решается задача наилучшего приближения  вектора из Rn+1 вектором из Rn: Наилучший выбор приближения – проекция вектора на Rn.

V = C1 e1 +… Cn en, где  .

Задача о наилучшем приближении в Н (гильбертовом пространстве).

Скалярное произведение. Численнозначная функция двух элементов (f,g) называется скалярным произведением, если выполнено

1) (f , f)0 , (f , f) = 0 f =0

2) (f , g) = (g , f)

3) (f , g) = (f , g) = (f ,  g)

4) (f + g , h) = (f , h) + (g , h)

Заметим, что здесь считается действительным числом. Если считать  комплексным числом, то третье свойство надо определять так: (f,g) = (f,g), (f,g), =  (f, g), где  и  - комплексно-сопряженные числа.

Упражнение. Покажите, что

1) (a , b) = |a| |b| cos  - скалярное произведение векторов a , b,

2) ((x1 … xn ) , (y1, … yn)) = (x1 y1 + … + xn yn) – скалярное произведение векторов – строк,

3) (f(x) , g(x)) =  - скалярное произведение функций , заданных на отрезке .

Если в пространстве задано скалярное произведение, то, задавая норму в пространстве соотношением  , можно сделать пространство нормированным.

Задавая метрику соотношением , можно сделать нормированное пространство метрическим.

Если в пространстве задано скалярное произведение, то в нем можно определить углы и расстояния между элементами .

Гильбертовым пространством H называется полное, бесконечномерное, сепарабельное линейное пространство со скалярным произведением.

Пространство полно, если любая фундаментальная последовательность его  элементов сходится к элементу пространства.

Пространство сепарабельно, если в нем существует счетное всюду плотное множество (как рациональные числа среди действительных чисел).

Элементы (функции) гильбертова пространства называются векторами (бесконечномерные векторы над осью действительных чисел, так как функция полностью определяется всеми своими значениями (при всех значениях аргумента, а их бесконечное число)).

Функции ортогональны, если (f , g) = 0.

 Система функций называется полной, если любой элемент пространства может быть разложен по этой системе (представлен в виде линейной комбинации ее элементов).

Можно показать, что любая система из бесконечного количества попарно ортогональных функций полна в гильбертовом пространстве.

Мы будем считать, что функции  интегрируемы на отрезке , и рассматривать гильбертово пространство L2 со скалярным произведением (f(x) , g(x)) =  над полем действительных чисел. Введем в нем норму элемента:

  . Назовем среднеквадратическим уклонением функции  от функции  величину .

Рассмотрим задачу о наилучшем приближении в пространстве L2 функции  линейной комбинацией конечного числа ортогональных функций .

Выбрать действительные коэффициенты  ,  - попарно ортогональны, чтобы минимизировать среднеквадратическое уклонение функции от линейной комбинации

.

Преобразуем выражение для , применяя известную еще из школы процедуру выделения полного квадрата и учитывая ортогональность функций : ().

    =

.

Минимизировать это выражение по - означает минимизировать второе слагаемое, в котором содержатся коэффициенты . Это слагаемое неотрицательно, так как  (свойство скалярного произведения), а квадратная скобка, в которую входят , стоит в квадрате. Следовательно, минимизировать это второе слагаемое – означает сделать его нулевым, выбрав коэффициенты

. Коэффициенты  называются коэффициентами Фурье.

Если , то  . Но , поэтому

 или . Эти неравенства называются неравенствами Бесселя.

Если система функций полна (в гильбертовом пространстве это выполнено, так как функции попарно ортогональны), то справедливо равенство Парсеваля .

В самом деле, пусть . Тогда  ( так как ).

Если функции  не только ортогональны, но еще и ортонормированны, т.е. , то равенство Парсеваля – это аналог теоремы Пифагора в бесконечномерном пространстве .

Следствие из равенства Парсеваля. Пусть выполнено равенство Парсеваля, пусть . Тогда .

Доказательство. Пусть выполнено равенство Парсеваля . Тогда по необходимому признаку сходимости ряда . Так как  , тогда  .

Ряд Фурье по тригонометрической системе функций

(тригонометрический ряд Фурье).

Тригонометрической системой функций называется система функций

 Это – периодические функции.

Докажем два свойства периодических функций.

1) Если функция  имеет период , то функция имеет период .

Доказательство. .

2) Если функция  имеет период , то .

Доказательство. =

(делаем замену переменных в последнем интеграле )

.

Доказанные свойства позволяют

1) рассматривать тригонометрическую систему функций на любом отрезке длиной  (период  равен , ), например на отрезке ,

2) при вычислениях интегралов от функций с периодом, кратным , проводить интегрирование по любому отрезку длиной .

Так как элементы тригонометрической системы функций представляют собой непрерывные функции, то они сами и их квадраты (как произведение непрерывных функций) интегрируемы на отрезке . Поэтому можно рассматривать пространство L2 на отрезке  и строить ряд Фурье.

Скалярное произведение функций введем так:

 Для того, чтобы построить ряд Фурье по тригонометрической системе функций надо доказать, что эти функции попарно ортогональны на .

Теорема. Тригонометрическая система функций состоит из попарно ортогональных на отрезке  функций.

Доказательство. . ,

,

Пусть .

Теорема доказана.

Вычислим скалярные квадраты элементов тригонометрической системы.

,

.

Составим ряд Фурье по тригонометрической системе функций

.

Коэффициенты Фурье вычисляются по формуле .

, ,

.

Теперь необходимо сформулировать условия, при которых функция представляется рядом Фурье по тригонометрической системе функций.

Условия Дирихле.

Вам также может быть полезна лекция "2 Функции конфликтов".

1) Интервал, на котором определена функция, может быть разбит на конечное число интервалов, в каждом из которых функция непрерывна и монотонна.

2) Функция в области определения непрерывна или имеет конечное число разрывов первого рода.

Теорема Дирихле.

Пусть функция задана на некотором сегменте и удовлетворяет на нем условиям Дирихле. Тогда функция может быть разложена на этом сегменте в сходящийся к ней ряд Фурье по ортогональной системе функций .

В точке непрерывности функции , где  - сумма ряда Фурье.

В точке разрыва функции .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее