Популярные услуги

Любая задача по линалу
КМ-3 Важнейшие аспекты теории графов - любой вариант за 3 суток!
Любая задача по математическому анализу и по интегралам и дифференциальным уравнениям
Решу любую задачу
Любая задача по Линейной алгебре и аналитической геометрии
НОМОТЕХ
Предельные теоремы и математическая статистика
Повышение уникальности твоей работе
Сдам любой тест по дискретке в течение суток на положительную оценку!
Любой реферат по дискретной математике
Главная » Лекции » Математика » Интегралы и дифференциальные уравнения » Приложения определенного интеграла

Приложения определенного интеграла

2021-03-09СтудИзба

Лекции 8. Приложения определенного интеграла.

Приложение интеграла к физическим задачам основано на свойстве аддитивности интеграла по множеству. Поэтому с помощью интеграла могут вычисляться такие величины, которые сами аддитивны по множеству. Например, площадь фигуры равна сумме площадей ее частей Длина дуги, площадь поверхности, объем тела, масса тела обладают тем же свойством. Поэтому все эти величины можно вычислять с помощью определенного интеграла.

Можно использовать два метода решения задач: метод интегральных сумм и метод дифференциалов.

Метод интегральных сумм повторяет конструкцию определенного интеграла: строится разбиение, отмечаются точки, в них вычисляется функция, вычисляется интегральная сумма, производится предельный переход. В этом методе основная трудность – доказать, что в пределе получится именно то, что нужно в задаче.

Метод дифференциалов использует неопределенный интеграл и формулу Ньютона – Лейбница. Вычисляют дифференциал величины, которую надо определить, а затем, интегрируя этот дифференциал, по формуле Ньютона – Лейбница получают требуемую величину. В этом методе основная трудность – доказать, что вычислен именно дифференциал нужной величины, а не что-либо иное.

Вычисление площадей плоских фигур.

Рекомендуемые материалы

1. Фигура ограничена графиком функции, заданной в декартовой системе координат.

Мы пришли к понятию определенного интеграла от задачи о площади криволинейной трапеции (фактически, используя метод интегральных сумм). Если функция  принимает только неотрицательные значения, то площадь под графиком функции на отрезке [a, b] может быть вычислена с помощью определенного интеграла . Заметим, что поэтому здесь можно увидеть и метод дифференциалов.

Но функция может на некотором отрезке принимать и отрицательные значения, тогда интеграл по этому отрезку будет давать отрицательную площадь, что противоречит определению площади.

Можно вычислять площадь по формуле S=. Это равносильно изменению знака функции в тех областях, в которых она принимает отрицательные значения.

Если надо вычислить площадь фигуры, ограниченной сверху графиком функции , а снизу графиком функции , то можно пользоваться формулой  S=, так как .

Пример. Вычислить площадь фигуры, ограниченной прямыми x=0, x=2 и графиками функций y=x2, y=x3.

Заметим, что на интервале (0,1) выполнено неравенство x2 > x3, а при x >1 выполнено неравенство x3 > x2. Поэтому

2. Фигура ограничена графиком функции, заданной в полярной системе координат.

Пусть график функции задан в полярной системе координат и мы хотим  вычислить площадь криволинейного сектора, ограниченного двумя лучами  и графиком функции  в полярной системе координат.

Здесь можно использовать метод интегральных сумм, вычисляя площадь криволинейного сектора как предел суммы площадей элементарных секторов, в которых график функции заменен дугой окружности .

Можно использовать и метод дифференциалов: .

Рассуждать можно так. Заменяя элементарный криволинейный сектор, соответствующий центральному углу  круговым сектором, имеем пропорцию . Отсюда . Интегрируя и используя формулу Ньютона – Лейбница, получаем  .

Пример. Вычислим площадь круга (проверим формулу). Полагаем . Площадь круга равна .

Пример. Вычислим площадь, ограниченную кардиоидой .

3 Фигура ограничена графиком функции, заданной параметрически.

Функция может быть задана параметрически в виде . Используем формулу S=, подставляя  в нее  и пределы интегрирования по новой переменной . . Обычно при вычислении интеграла выделяют те области, где подинтегральная функция имеет определенный знак и учитывают соответствующую площадь с тем или иным знаком.

Пример. Вычислить площадь, ограниченную эллипсом .

Используем симметрию эллипса, вычислим площадь четверти эллипса, находящуюся в первом квадранте. В этом квадранте . Поэтому  .

Вычисление объемов тел.

1. Вычисление объемов тел по площадям параллельных сечений.

Пусть требуется вычислить объем некоторого тела V по известным площадям сечений  этого тела плоскостями, перпендикулярными прямой OX, проведенными через любую точку x отрезка [a, b] прямой OX.

Применим метод дифференциалов. Считая элементарный объем , над отрезком   объемом прямого кругового цилиндра с площадью основания  и высотой , получим . Интегрируя и применяя формулу Ньютона – Лейбница, получим

.

2. Вычисление объемов тел вращения.

Пусть требуется вычислить объем тела вращения вокруг оси OX.

Тогда .

Аналогично, объем тела вращения вокруг оси OY, если функция задана в виде , можно вычислить по формуле .

Если функция задана в виде  и требуется определить объем тела вращения вокруг оси OY, то формулу для вычисления объема можно получить следующим образом.

Переходя к дифференциалу и пренебрегая квадратичными членами,  имеем . Интегрируя и применяя формулу Ньютона – Лейбница, имеем    .

Пример. Вычислить объем шара .  

Пример. Вычислить объем прямого кругового конуса, ограниченного поверхностью и плоскостью .

Вычислим объем, как объем тела вращения, образованного вращением вокруг оси OZ прямоугольного треугольника в плоскости OXZ, катеты которого лежат на оси OZ и прямой z = H , а  гипотенуза лежит на прямой .

Выражая x через z, получим .

Искомый объем можно посчитать как разность объемов прямого кругового цилиндра с высотой H и тела, вращения, ограниченного цилиндрической, конической поверхностями  и плоскостью OXY

.

Вычисление длины дуги.

Для того, чтобы получить формулы для вычисления длины дуги, вспомним выведенные в 1 семестре формулы для дифференциала длины дуги.

Если дуга представляет собой график непрерывно дифференцируемой функции , дифференциал длины дуги можно вычислить по формуле

. Поэтому

Если гладкая дуга задана параметрически , то

. Поэтому .

Если дуга задана в полярной системе координат, то

. Поэтому .

Пример. Вычислить длину дуги графика функции, . .

Пример. Вычислить длину кардиоиды .

Пример. Вычислить длину одной арки циклоиды. .

.

Вычисление площади поверхности вращения.

Пусть гладкая дуга представляет собой график непрерывно дифференцируемой функции . Эта дуга вращается вокруг оси OX, описывая некоторую поверхность. Требуется определить площадь этой поверхности.

Считая элемент поверхности боковой поверхностью усеченного конуса, высотой которого является отрезок , получим . Выделяя здесь линейную часть, пренебрегая квадратичным членом от дифференциала , получаем . Интегрируя и применяя формулу Ньютона – Лейбница, получим

Рекомендация для Вас - 1 Историк и метод.

.

Если функция задана параметрически или в полярной системе координат, то в этой формуле производится соответствующая замена переменной, формулы для дифференциала длины дуги приведены выше.

Пример. Дуга графика функции вращается вокруг оси OX, образуя «ведерко». Можно ли налить в это ведерко определенное количество краски так, чтобы окрасить боковую поверхность ведерка?

Во-первых, определим, конечен ли объем ведерка.

, интеграл сходится, объем конечен. Ведерко будет окрашено, если будет окрашена каждая точка поверхности, т.е. в том случае, когда боковая поверхность ведерка будет конечна.

. Так как а интеграл расходится, то по первому признаку сравнения будет расходиться и интеграл . Следовательно, боковая поверхность имеет бесконечную площадь, и боковую поверхность ведерка окрасить не удастся.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее