Популярные услуги

Курсовой проект по деталям машин под ключ
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Задача по гидравлике/МЖГ
Главная » Лекции » Инженерия » Взаимозаменяемость » Методы достижения заданной точности замыкающего звена размерной цепи и пути их осуществления

Методы достижения заданной точности замыкающего звена размерной цепи и пути их осуществления

2021-03-09СтудИзба

Лекции №9, 10. Методы достижения заданной точности замыкающего звена размерной цепи и пути их осуществления

Метод полной взаимозаменяемости при сборке изделий

Сущность метода полной взаимозаменяемости при сборке изделий состоит в том, что заданная точность замыкающего звена размерной цепи достигается простым соединением деталей без какого-либо выбора, пригонки или регулировки.

Для обеспечения такой взаимозаменяемости допуски на звенья размерной цепи рассчитывают по методу «максимума – минимума». Методика расчета по этому методу достаточно проста, однако при ее использовании предъявляются слишком жесткие требования к точности составляющих звеньев, а следовательно, увеличиваются затраты на изготовление деталей. Поэтому для обеспечения полной взаимозаменяемости деталей при сборке изделий используют теоретико-вероятностный метод расчета размерных цепей, сущность которого состоит в следующем. Пусть погрешности составляющих и замыкающего звеньев размерной цепи подчиняются закону нормального распределения, а границы их вероятного рассеяния совпадают с границами полей допусков соответствующих размеров. Тогда можно принять  или

,                                           (10)

соответственно  или . При этом у 0,27 % изделий размеры замыкающих звеньев могут выходить за пределы поля допуска.

Подставив значения  и  в уравнение  и выполнив простые преобразования, получим уравнение для определения допуска замыкающего размера:

.                                  (11)

Определив , по формуле

Рекомендуемые материалы

               (12)

вычисляем , а по формулам

;                                  

                           (13)

вычисляем значения отклонений  и .

Формула (11) выдвинута из предположения, что распределение действительных размеров деталей в сопряжении подчиняется закону Гаусса. При этом центр группирования совпадает с серединой поля допуска, а поле рассеяния – со значением допуска. В производственных условиях случайные погрешности размеров деталей могут распределяться и не по закону Гаусса. Для определения допуска замыкающего размера при произвольном законе распределения погрешностей в формулу (11) вводят коэффициент относительного рассеяния :

.                                  (14)

Коэффициенты  и  характеризуют отличие распределения погрешностей i-го составляющего и замыкающего звеньев от распределения по закону Гаусса, причем коэффициент , характеризующий отличие распределения погрешностей замыкающего звена, вводится, когда (m – 1) < 6 (m – число звеньев размерной цепи).

Коэффициент , где  – поле рассеивания составляющего звена . Приняв , получим:

– для закона нормального распределения

;                                    (15)

– для закона равной вероятности

;                          (16)

– для закона треугольника (Симпсона)

.                         (17)

Эффективность применения принципов теории вероятностей при расчете допусков размерных цепей можно показать на следующем примере. Предположим, что размерная цепь состоит из четырех составляющих размеров с допусками , откуда .

Применение теории вероятностей в приведенном примере позволяет при одном и том же допуске замыкающего звена расширить в 2 раза допуск составляющих размеров; при этом только у 0,27 % составляющих звеньев размерных цепей предельные значения замыкающего размера (при законе нормального распределения) могут быть не выдержаны (т.е. имеется возможность брака).

Метод неполной взаимозаменяемости

Метод неполной взаимозаменяемости (теоретико-вероятност-ный метод) нашел широкое применение в сборочных процессах при большом числе звеньев, входящих в размерную цепь. В настоящее время существует большое количество вероятностных методов: равных допусков, равного квалитета, пропорционального влияния, максимального числа единиц допуска и др. Использование того или иного метода на стадии проектирования, когда информация о будущем изделии сравнительно мала, зависит от количества и качества имеющейся априорной информации.

Метод неполной взаимозаменяемости, основанный на вероятностном подходе к суммированию допусков, позволяет получить допуски на составляющие звенья размерной цепи в случае равных допусков. В случае разных квалитетов точности составляющих звеньев, определяют число единиц точности «а» и далее находят допуск на любое звено размерной цепи, используя формулы:

;                                 (18)

,                                          (19)

где m – число звеньев в размерной цепи;

       tΔ – коэффициент риска, выбираемый в зависимости от принятой вероятности риска р выхода величины АΔ за пределы допуска ТАΔ.

Для линейных цепей с параллельными звеньями принимают
xi = 1 для увеличивающих звеньев, и xi = – 1 для уменьшающих звеньев. Координату середины поля допуска замыкающего звена вычисляют по формуле

,                                        (20)

где  – соответственно координаты середин полей допусков замыкающего и составляющих звеньев размерной цепи.

Анализ полученных данных позволяет судить о возможности достижения заданной точности замыкающего звена размерной цепи.

Метод групповой взаимозаменяемости

Сущность метода групповой взаимозаменяемости заключается в изготовлении деталей со сравнительно широкими технологически выполнимыми допусками, выбираемыми из соответствующих стандартов, сортировке деталей на равное число групп с более узкими групповыми допусками и сборке их (после комплектования) по одноименным группам. Такую сборку называют селективной.

Метод групповой взаимозаменяемости применяют, когда средняя точность размеров цепи очень высокая и экономически неприемлемая. При селективной сборке (в посадках с зазором и натягом) наибольшие зазоры и натяги уменьшаются, а наименьшие увеличиваются, приближаясь с увеличением числа групп сортировки к среднему значению зазора или натяга для данной посадки, что делает соединения более стабильными и долговечными. В переходных посадках наибольшие натяги и зазоры уменьшаются, приближаясь с увеличением числа групп сортировки к значению натяга или зазора, которое соответствует серединам полей допусков деталей.

Для установления числа групп п сортировки деталей необходимо знать требуемые предельные значения групповых зазоров или натягов, которые находят из условия обеспечения наибольшей долговечности соединения, либо допускаемое значение группового допуска (ТDGr или ТdGr), определяемое экономической точностью сборки и сортировки деталей, а также возможной погрешностью их формы и расположения. Отклонения формы не должны превышать группового допуска, иначе одна и та же деталь может попасть в разные (ближайшие) группы в зависимости от того, в каком сечении она измерена при сортировке.

Рассмотрим случай определения числа п групп, когда в исходной посадке ТD = Td. Для этого случая характерно, что групповой зазор или натяг остаются постоянными при переходе от одной группы к другой. При  сборке деталей для повышения долговечности подвижных соединений необходимо создавать наименьший допускаемый зазор, а для повышения работоспособности соединений с натягом – наибольший допускаемый натяг.

Число п групп рассчитывают по следующим формулам:

при заданном  (для подвижной посадки)

;                                (21)

при заданном  (для посадки с натягом)

.                            (22)

При заданном групповом допуске  или  . Тогда при
TD = Td имеем

.                              (23)

При TD > Тd групповой зазор (или натяг) при переходе от одной группы к другой не остается постоянным, следовательно, однородность соединений не обеспечивается, поэтому селективную сборку целесообразно применять только при равных допусках, т.е. TD = Тd.

При большом числе групп сортировки групповой допуск незначительно отличается от допуска при меньшем числе групп, а организация контроля и сложность сборки значительно возрастают. Практически nmax = 4…5, и лишь в подшипниковой промышленности при сортировке тел качения принимают .

Селективную сборку применяют не только в сопряжениях гладких деталей цилиндрической формы, но и более сложных по форме (например, резьбовых). Селективная сборка позволяет в п раз повысить точность сборки (точность соединения) без уменьшения допусков на изготовление деталей или обеспечить заданную точность сборки (точность соединения) при расширении допусков до экономически целесообразных величин.

Вместе с тем селективная сборка имеет недостатки: усложняется контроль (требуются более точные измерительные средства, контрольно-сортировочные автоматы, больший штат контролеров); повышается трудоемкость процесса сборки (в результате создания сортировочных групп); возможно увеличение незавершенного производства вследствие разного числа деталей в парных группах.

В производственных условиях конкретного предприятия селективная сборка обеспечивает неполную (групповую) взаимозаменяемость, ввиду чего этот метод используют обычно в условиях завода-изготовителя при обеспечении внутренней взаимозаменяемости. Исключением являются, например, поршни, поршневые пальцы к двигателям внутреннего сгорания и некоторые другие запасные части.

Считается, что применение селективной сборки целесообразно в массовом и крупносерийном производствах для соединений высокой точности, когда дополнительные затраты на сортировку, маркировку, сборку и хранение деталей по группам окупаются высоким качеством изделий. При производстве подшипников качения и сборке ответственных резьбовых соединений с натягом селективная сборка является единственным экономически целесообразным методом обеспечения требуемой точности.

Для сокращения объемов незавершенного производства, образующегося при селективной сборке, строят эмпирические кривые распределения размеров соединяемых деталей. Если смещения центров группирования и кривые распределения размеров соединяемых деталей одинаковы и соответствуют, например, закону Гаусса, то число собираемых деталей в одноименных группах одинаково. Следовательно, только при идентичности кривых распределения сборка деталей из одноименных групп устраняет образование незавершенного производства.

Иногда деление допуска, выраженного в единицах длины, на равные части заменяют делением на части, границы которых выражаются в долях среднеквадратичного отклонения . Если вторая группа деталей имеет сортировочные границы , то относительное число деталей первой сортировочной группы Ф (3) – Ф (1) = – 0,5 – 0,341 = 0,1587 = 15,87 %. Тогда относительное число деталей второй группы 2Ф (1) = 2 – 0,3413 = 68,26 %, а относительное число деталей третьей группы, как и первой, Ф (3) – Ф (1) = 15,87 %. В результате окажется, что число соединений, собранных из деталей второй группы, примерно в 4 раза больше числа соединений, собранных из первой или третьей группы.

Метод пригонки при сборке изделия

При этом методе предписанная конструктором точность исходного размера достигается дополнительной обработкой при сборке деталей по одному из заранее намеченных составляющих звеньев размеров цепи. При этом методе детали по всем размерам, входящим в размерную цепь, изготовляют с допусками, экономически приемлемыми для данных условий производства. Чтобы осуществлять пригонку по предварительно выбранному размеру, необходимо по этому размеру предусмотреть припуск, достаточный для компенсации исходного размера. В то же время этот припуск должен быть наименьшим для сокращения объема пригоночных работ. Способ пригонки можно применять только в единичном и в мелкосерийном производствах, когда нельзя использовать иные способы обеспечения требуемой точности замыкающего звена. В единичном и мелкосерийном производствах применяют также способ совместной обработки деталей в предварительно собранном виде или установленных в одном приспособлении и другие способы изменения размеров (например, методы наплавки или электролитического растворения). Наибольшее применение метод пригонки нашел при установке зубчатых колес, шкивов и других подобных деталей на валах с помощью шпонок. Последние стандартизованы по размерам, однако на практике очень часто приходится изменять размеры шпонок, пригоняя их по месту установки.

Метод регулировки при сборке изделий

Сущность этого метода заключается в том, что требуемая точность замыкающего звена размерной цепи достигается путем изменения величины компенсирующего звена без снятия с него материала. Для этого в собираемом узле могут устанавливаться специальные компенсаторы, например, прокладки (рис. 11).

Метод регулировки находит применение в различных типах машиностроительного производства: от массового до индивидуального (единичного). Благодаря универсальности, метод регулировки позволяет решать сложные задачи теплового расширения деталей, базирования, динамики механических систем.

Рис. 11. Пример компенсирующего звена

Из рис. 11 следует, что за счет изменения величины составляющего звена А1 (количества и толщены прокладок) изменяется величина замыкающего звена Ад и достигается требуемая его точность.

Метод регулировки, который широко применяют при сборке машин и механизмов, позволяет обеспечить высокой точности изделий и поддерживать ее во время эксплуатации при расширенных допусках всех звеньев размерной цепи. Особое значение этот метод приобретает при расчете размерных цепей, в которых имеются размеры, меняющиеся во время эксплуатации изделия. К недостаткам метода следует отнести увеличение числа деталей в машине, что усложняет ее конструкцию, сборку и эксплуатацию.

Для определения путей повышения точности замыкающего звена размерной цепи необходимо установить зависимость между величиной рассеивания составляющих звеньев и полем рассеивания замыкающего звена. Для этого воспользуемся понятием полного дифференциала, что допустимо, так как величина полей рассеивания звеньев размерной цепи, как правило, составляет малую величину по сравнению с величинами самих звеньев. Величина замыкающего звена является функцией составляющих звеньев и может быть представлена выражением

,                              (24)

где т – общее количество звеньев размерной цепи, включая замыкающее звено.

Полный дифференциал функции равен

.                     (25)

Заменим дифференциалы малыми приращениями, т.е. величинами полей рассеивания:

,      (26)

где  – поле рассеивания замыкающего звена.

Или

,                                          (27)

здесь  – поле рассеивания i-го составляющего звена Аi.

Из формулы (27) значение величины поля рассеивания замыкающего звена определяется как сумма произведений отношения приращения размера замыкающего звена на приращение составляющих звеньев поля рассеивания составляющих звеньев, т.е.

Вместе с этой лекцией читают "Поиск источников в архивах".

.                                               (28)

Из формулы (28) следует, что точность замыкающего звена размерной цепи можно повысить следующими путями:

1) изменением количества звеньев размерной цепи т;

2) уменьшением величины передаточного отношения ;

3) уменьшением полей рассеивания составляющих звеньев wi.

Примечание. Если размерная цепь линейная, то для повышения точности замыкающего звена достаточно воспользоваться первыми двумя путями.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее