Структура оптимального решающего правила
2.2. Структура оптимального решающего правила.
Рассмотрим структуру правила, оптимального по весовому критерию ( под структурой решающего правила понимается последовательность математических и логических операций , которые необходимо выполнить над выборочными значениями , чтобы вынести требуемое решение).
В соответствии с весовым критерием мы должны найти правило, обеспечивающее выполнение условия , где
- весовой множитель.
Запишем вероятности и
в виде
;
.
Здесь - многомерные плотности вероятности (функции правдоподобия) выборки
при наличии и отсутствии сигнала (обратите внимание на различие в обозначениях дифференциала
и решающего правила
).
Весовой критерий при этом может быть представлен в виде , где
- отношение правдоподобия выборки
. Чтобы выполнить условие максимума интеграла, достаточно за счет соответствующего выбора решающей функции
добиться для каждого из возможных значений
наибольшего значения подынтегральное выражения. Эта функция в нашем случае принимает только два значения: 0 и 1, так что подынтегральное выражение либо обращается в нуль, либо умножается на единицу. Следовательно, максимум интеграла достигается, если для положительных значений подынтегрального выражения принимать
, а для отрицательных
- т.е.
Таким образом, оптимальный в смысле весового критерия обнаружитель представляет устройство вычисления отношения правдоподобия наблюдаемой выборки и сравнения его с фиксированным порогом .
Рекомендуемые материалы
Отношение правдоподобияя, т.е. отношение функций правдоподобия , показывающее, какую из двух взаимоисключающих гипотез (ситуаций) -
или
следует считать более вероятной, играет фундаментальную роль в теории различения статистических гипотез, поскольку представляет важнейший случай решающей статистики.
Лекция "Средства, повышающие свертываемость крови коагулянты" также может быть Вам полезна.
Решающей статистикой (не путать со статистикой, как областью математической и экономической наук) называют функцию выборочных значений, размерность которой меньше, чем у исходной выборки. Очевидно, что чем меньше размерность решающей статистики, тем проще ее использовать для построения решающего правила. Наилучшей с этой точки зрения является одномерная статистика, например, выборочное среднее или выборочные моменты более высоких порядков. Однако сокращение размерности (редукция) выборочных данных не должно приводить к потере содержащейся в выборке полезной информации, на основании которой решается задача различения статистических гипотез. Статистика, обладающая таким свойством, называется достаточной; среди достаточных статистик наибольший интерес представляет минимальная достаточная статистика, т.е. статистика минимальной размерности, при которой свойство достаточности еще сохраняется. Доказано, что в том случае, когда элементы выборки
как при гипотезе, так и при альтернативе статически независимы, отношение правдоподобия является минимальной достаточной статистикой при различении простых гипотез. (Напомним, что необходимым и достаточным условием независимости выборочных значений является факторизация функций правдоподобия, т.е. возможность их представления в виде
).
В более общем случае это свойство отношения правдоподобия может нарушаться, однако и в этом случае квазиоптимальные алгоритмы часто используют статистику отношения правдоподобия.
Можно также показать, что в случае различения простых гипотез полученная структура обнаружителя – “вычислитель отношения правдоподобия + постоянный порог” - является оптимальной не только весового критерия, но и для других, рассмотренных нами: Неймана-Пирсона, максимума апостериорной вероятности, максимального правдоподобия, минимаксного. Различие этих критериев выражается только в величине порога .
Очевидно, что для рассмотренной структуры решающего правила его оптимальность не нарушится, если отношение правдоподобия заменить любой монотонной однозначной функцией от него (при условии соответствующего пересчета значения решающего порога). Часто в качестве такой функции используют логарифм отношения правдоподобия . Переход к этой статистике удобен при независимых выборках, когда функции правдоподобия факторизуется. При этом
, соответственно
, т.е. при вычислении решающей статистики операция умножения заменяется существенно более простой операцией суммирования.
Самостоятельную роль в теории принятия статистических решений играет математическое ожидание логарифма отношения правдоподобия (информация Кульбака-Леблера). Величина
может служить количественной мерой статистического “расстояния” между различаемыми распределениями. Смысл этой величины достаточно нагляден: чем больше площадь перекрытия одномерных функций правдоподобия
и
, тем ближе к нулю (в среднем) логарифм отношения правдоподобия и наоборот, чем меньше площадь перекрытия кривых
, тем большую модуль информация Кульбака-Леблера. Величина
может интерпретироваться как среднее приращение статистики
на один элемент выборки (шаг наблюдения) в процессе ее накопления, поэтому средний объем выборки, необходимый для вынесения решения с заданными вероятностями ошибок a и b, обратно пропорционален этой величине (подробнее см. следующие разделы).
Необходимо подчеркнуть. Что операция расчета логарифма отношения правдоподобия может реализовываться с помощью устройств согласованной фильтрации (известно, что выходной эффект фильтра, согласованного с наблюдаемой выборкой, пропорционален логарифму отношения правдоподобия этой выборки). На практике оптимальная обработка выборки обычно разделяется на два этапа: согласованную фильтрацию одиночного сигнала и расчет отношения правдоподобия для последовательности отсчетов, наблюдаемых на выходе согласованного фильтра. Поэтому мы под формированием решающей статистики будем понимать расчет отношения правдоподобия (или его логарифма) для выборки, наблюдаемой на выходе фильтра (коррелятора) согласованного с одиночным сигналом.