Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Курсовой проект по деталям машин под ключ в бауманке
Главная » Лекции » Инженерия » Автомобили » Устойчивость, ее зависимость от конструктивных параметров автомобиля

Устойчивость, ее зависимость от конструктивных параметров автомобиля

2021-03-09СтудИзба

Лекция 15. Устойчивость, ее зависимость от конструктивных параметров автомобиля

План лекции

15.1. Продольная устойчивость автомобиля

15.2. Продольная устойчивость автопоезда

15.3. Влияние различных факторов на устойчивость

автомобиля

15.1. Продольная устойчивость автомобиля

При нарушении продольной устойчивости автомобиль может опрокинуться относительно оси передних или задних колес, а также скользить в продольном направлении.

Опрокидывание вокруг осей колес возможно только у автомо­биля с очень короткой базой и высоким расположением центра тяжести. Однако для большинства современных автомобилей, име­ющих низкое расположение центра тяжести, опрокидывание в про­дольной плоскости маловероятно. Возможно лишь продольное скольжение, вызванное буксованием ведущих колес, что более вероятно для автопоездов.

В связи с этим показателем продольной устойчивости автомо­биля является критический угол подъема по буксованию αб.

Рекомендуемые материалы

Определим критический угол подъема по буксованию для ав­томобиля. С этой целью рассмотрим равномерное движение авто­мобиля на максимальном подъеме (рис. 15.1), так как разгон на нем невозможен. При преодолении максимального подъема ско­рость движения автомобиля небольшая, поэтому силой сопротив­ления воздуха Рв пренебрегаем. При этом сцепление ведущих ко­лес с дорогой полностью используется касательной реакцией до­рогиа касательной реакцией дороги на перед­них колесах пренебрегаем, так как она мала по сравнению с каса­тельной реакцией Rxr

Из условий равновесия автомобиля следует, что

Максимальное значение ка­сательной реакции дороги на ве­дущих колесах автомобиля огра­ничена сцеплением колес с до­рогой:

Подставим в это выражение значения реакций дороги RZ2 и RX1 и разделим обе части урав­нения на cos α. Учитывая в дан­ном случае, что α = αб, опреде­лим критический угол подъема по буксованию:

Рис. 15.1. Схема для определения критического угла подъема по буксованию

Критическим углом подъема по буксованию называется предель­ный угол, при котором еще воз­можно движение автомобиля на подъеме без буксования ведущих колес.

Критический угол подъема по буксованию во многом зависит от коэффициента сцепления φх. Так, например, при φх = 0,3 (асфальт влажный и грязный или покрытый снегом) для автомобилей с колес­ной формулой 4x2 угол αб  = 10... 15°.

Для автомобиля со всеми веду­щими колесами критический угол подъема по буксованию

Следовательно, такого типа автомобили могут преодолевать кру­тые подъемы без потери продольной устойчивости.

Угол αб линейно зависит от коэффициента фх (рис. 15.2).

15.2. Продольная устойчивость автопоезда

Признаком нарушения продольной устойчивости автопоезда при движении на подъеме является его сползание вниз по подъе­му, которое вызывается буксованием ведущих колес автомобиля-тягача. Это может произойти, например, во время динамического преодоления автопоездом крутого подъема большой длины.

Продольную устойчивость автопоезда характеризует критичес­кий (максимальный) угол αб подъема по буксованию.

Определим максимальный угол подъема, который может пре­одолеть прицепной автопоезд при равномерном движении без бук­сования ведущих колес автомобиля-тягача. При этом силами со­противления качению и воздуха пренебрегаем, так как автопоезд на подъеме движется с небольшой скоростью и значения этих сил невелики (рис. 15.3).

Из условий равновесия автомобиля-тягача следует:

где Gnpвес прицепа, Н; hKpвысота расположения крюка бук­сирного устройства; а — угол подъема.

Рис. 15.2. Зависимости критичес­кого угла подъема по буксованию от коэффициента сцепления:

1 — автопоезд; 2 — автомобиль обыч­ной проходимости; 3 — автомобиль повышенной проходимости

Рис. 15.3. Движение автопоезда на подъеме

Максимальное значение касательной реакции дороги RX2 огра­ничено сцеплением колес с дорогой:

Подставим в это выражение значения касательной RX2 и нор­мальной RZ2 реакций дороги, разделим обе части выражения на cos а и, приняв, что а = αб, получим выражение для максимально­го, или критического, угла подъема, при котором возможно дви­жение прицепного автопоезда без буксования ведущих колес ав­томобиля-тягача:

Критический угол подъема по буксованию существенно зави­сит от сцепления колес с дорогой. Так, например, при коэффи­циенте сцепления φх. = 0,3 (асфальт, покрытый снегом) для авто­поездов этот угол не превышает 6°. Поэтому в зимнее время часто происходит буксование ведущих колес тягача автопоезда на отно­сительно пологих подъемах (см. рис. 15.2).

15.3. Влияние различных факторов на устойчивость автомобиля

В условиях эксплуатации чаще происходит нарушение попе­речной устойчивости автомобиля (занос, опрокидывание), кото­рое более опасно, чем нарушение продольной устойчивости.

На поперечную устойчивость автомобиля влияют различные конструктивные и эксплуатационные факторы. К ним относятся крен кузова автомобиля, износ шин, неисправность тормозных механизмов, центр тяжести автомобиля и колея колес, располо­жение груза в кузове, дорожное покрытие, повороты и виражи дороги, способ торможения автомобиля и др.

Рассмотрим влияние различных факторов на поперечную ус­тойчивость автомобиля.

Поперечный крен кузова. При определении показателей попе­речной устойчивости автомобиля не учитывались эластичность шин и упругость подвески, а автомобиль рассматривался как единое твердое тело.

В действительности автомобиль представляет собой систему масс, соединенных между собой подвеской, к которым относятся подрессоренные (кузов) и неподрессоренные (мосты, колеса) массы.

При разгоне, торможении и повороте автомобиля, а также езде по неровностям дороги вследствие действия боковой силы Ру (рис. 15.4, а) шины 1 и упругие устройства 2 подвески (рессоры, пружины и др.) с одной стороны автомобиля разгружаются, а с другой — нагружаются. В результате кузов автомобиля наклоняет­ся в поперечном направлении. Угол ψкр крена кузова увеличивает­ся с возрастанием боковой силы Ру. Он может быть уменьшен при увеличении угловой жесткости подвески, что достигается уста­новкой в подвеске стабилизатора 3 (рис. 15.4, б) поперечной ус­тойчивости, который препятствует крену кузова и уменьшает его поперечные угловые колебания.

а                                                                     б

Рис. 15.4. Крен кузова (а) и стабилизатор (б) поперечной устойчиво­сти кузова: 1 — шина; 2 — упругое устройство подвески; 3 — стабилизатор

Обычно при эксплуатации угол поперечного крена кузова не превышает 10°, однако этого достаточно для того, чтобы возросла возможность опрокидывания автомобиля. Поэтому значения кри­тической скорости и критического угла поперечного уклона до­роги (косогора) в действительности будут на 10... 15% меньше рассчитанных по формулам.

Износ шин. В процессе эксплуатации по мере износа протекто­ра шин ухудшается сцепление колес с дорогой и возрастает вероятность заноса автомобиля. Так, например, значение коэффици­ента сцепления колес с дорогой, протектор шин которых изно­шен до полного исчезновения рисунка («лысые шины»), почти в 2 раза меньше, чем у новых шин. Поэтому эксплуатация автомо­биля с «лысыми шинами» недопустима.

Неисправности тормозных механизмов. Нарушение поперечной устойчивости автомобиля происходит чаще всего при торможе­нии, когда в местах контакта шин с дорогой действуют большие тормозные силы. В этом случае тормозящее колесо неустойчиво при действии боковой силы, и достаточно ее небольшой величи­ны, чтобы начался занос автомобиля.

Причиной нарушения поперечной устойчивости при торможе­нии может быть неравномерное распределение тормозных сил по колесам автомобиля из-за замасливания или неправильной регу­лировки тормозных механизмов. При этом неравномерность рас­пределения тормозных сил у передних колес опаснее, чем у зад­них. Так, например, при одном заторможенном заднем правом колесе (рис. 15.5, а) автомобиль отклоняется вправо от направле­ния прямолинейного движения. При этом расстояние Sa от центра тяжести автомобиля до центра заторможенного колеса сокраща­ется. Уменьшается также и поворачивающий момент Р'и, создава­емый силой инерции. При заторможенном только переднем пра­вом колесе (рис. 15.5, 6) расстояние Sц во время торможения уве­личивается. Это приводит к возрастанию поворачивающего момента и дальнейшему отклонению автомобиля в сторону от на­правления прямолинейного движения. Поэтому неисправность пе­редних тормозных механизмов опаснее, чем задних.

Рис. 15.5. Устойчивость автомобиля при торможении:

а — заторможено заднее правое колесо; б — заторможено переднее правое колесо

Блокировка колес при торможении. На устойчивость автомоби­ля существенное влияние оказывает блокировка колес (доведение до юза) при торможении.

Одновременная блокировка всех колес автомобиля может про­изойти только на дорогах с оптимальными значениями коэффи­циента сцепления, составляющими 0,40... 0,45. На дорогах, харак­теризуемых другими значениями коэффициента сцепления, про­исходит блокировка передних или задних колес.

При торможении на дорогах с меньшим коэффициентом сцеп­ления у автомобиля первыми блокируются задние колеса, что может привести к потере устойчивости автомобиля.

При торможении на дорогах с более высоким коэффициентом сцепления у автомобиля первыми доводятся до юза передние ко­леса. Следствием этого может быть потеря управляемости автомо­биля.

Центр тяжести автомобиля и колея колес. Высота расположения центра тяжести автомобиля и ширина колеи передних и задних колес оказывают влияние на поперечную устойчивость автомобиля. Так, например, при высоком расположении центра тяжести может произойти опрокидывание автомобиля при действии боковой силы. Это наиболее вероятно при движении автомобиля на поворотах малого радиуса при отсутствии виражей вследствие уменьшения критической скорости автомобиля по опрокидыванию.

Легковые автомобили, движущиеся на поворотах с большой скоростью, обладают высокой устойчивостью, так как имеют низ­кое расположение центра тяжести и широкую колею передних и задних колес.

Дорога, повороты и виражи. Состояние покрытия дороги, ра­диусы поворотов и виражи оказывают существенное влияние на поперечную устойчивость автомобиля.

При ухудшении состояния дорожного покрытия (дождь, снег, обледенение) значительно уменьшается сцепление колес с доро­гой, что может привести к заносу автомобиля.

Наименьшие радиусы поворотов дорог составляют 30 м. При движении на дорогах с малыми радиусами поворотов создаются условия для нарушения поперечной устойчивости автомобиля в связи со снижением его критической скорости по заносу. Поэтому для повышения устойчивости автомобиля на поворотах с неболь­шими радиусами создают виражи — поперечные уклоны дороги, направленные к центру поворота. Виражи повышают не только ус­тойчивость автомобиля, но и безопасность движения на поворотах.

Расположение груза в кузове автомобиля. Устойчивость авто­мобиля при торможении может быть нарушена вследствие неправильного размещения груза в кузове. Так, например, при несов­падении центра тяжести груза с продольной осью автомобиля сила инерции Р'и (рис. 15.6, а), возникающая при торможении, создает поворачивающий момент, характеризуемый плечом Sц. Если при этом блокированы передние колеса автомобиля, то их сцепление с дорогой меньше, чем у задних колес. В результате под действием момента P'n Sц автомобиль поворачивается относительно точки А оси задних колес. Расстояние Sц в этом случае быстро уменьшает­ся до нуля и поворот автомобиля прекращается.

Рис. 15.6. Устойчивость автомобиля при неправильном расположении

груза в кузове:

а — блокированы передние колеса; 6 — блокированы задние колеса; А, Б — центры осей задних и передних колес

При блокировке задних колес (рис. 15.6, б) автомобиль пово­рачивается относительно точки Б оси передних колес. При этом расстояние Sц увеличивается, что может привести к заносу авто­мобиля.

Способ торможения. Устойчивость автомобиля существенно за­висит от способа торможения. Так, торможение автомобиля дви­гателем, который не отсоединяется от трансмиссии и работает на компрессорном режиме (без подачи горючей смеси в цилиндры) или режиме холостого хода, обеспечивает устойчивость автомо­биля против заноса вследствие равномерного распределения тор­мозных сил по колесам. При комбинированном торможении авто­мобиля (совместно тормозными механизмами колес и двигате­лем) повышается также его поперечная устойчивость, поскольку дифференциал трансмиссии обеспечивает более равномерное рас­пределение тормозных сил по колесам. В результате уменьшается вероятность заноса автомобиля.

Комбинированный способ торможения автомобиля необходи­мо применять на дорогах с малым коэффициентом сцепления (скользких, обледенелых и т. п.), так как в этом случае существенно повышается не только устойчивость автомобиля, но и безопас­ность его движения.

Лекция 16. Проходимость, ее зависимость от конструктивных особенностей автомобиля

План лекции

16.1. Габаритные параметры проходимости

16.2. Тяговые и опорно-сцепные параметры проходимости. Комплексный фактор проходимости

16.3. Влияние различных факторов на проходимость

автомобиля

Проходимость является эксплуатационным свойством, имею­щим важное значение для любых автомобилей, особенно работа­ющих в сельском хозяйстве, лесной промышленности, на строи­тельстве, в карьерах и в условиях бездорожья. Проходимость в та­ких условиях эксплуатации определяет среднюю скорость движе­ния и оказывает существенное влияние на производительность автомобиля.

Проходимость автомобиля оценивается габаритными, тяговы­ми и опорно-сцепными параметрами, а также комплексным фак­тором проходимости.

16.1. Габаритные параметры проходимости

Габаритные параметры характеризуют проходимость автомо­биля по неровностям дороги и его способность вписываться в до­рожные габариты.

Основными габаритными параметрами проходимости (рис. 16.1, 16.2) автомобиля являются дорожный просвет h, углы переднего α1 и заднего α 2 свеса, продольный p1 и поперечный р2 радиусы прохо­димости, наружный RH и внутренний RВ габаритные радиусы по­ворота, поворотная ширина bк, углы гибкости в вертикальной βв и горизонтальной α г плоскостях.

Дорожным просветом называется расстояние между низшей точ­кой автомобиля и дорогой. Он характеризует возможность такого движения, при котором автомобиль не задевает сосредоточенные препятствия (камни, пни, кочки и др.). Обычно дорожный просвет определяется под картером главной передачи ведущего моста. Его величина зависит от типа автомобиля и условий его эксплуатации. Так, для грузовых автомобилей ограниченной проходимости до­рожный просвет составляет 245... 280 мм, а для автомобилей повы­шенной проходимости — 315... 400 мм. Увеличение дорожного про­света приводит к повышению проходимости, что может быть дос­тигнуто увеличением диаметра колес и уменьшением габаритов глав­ной передачи (например, разнесенная главная передача). Однако увеличение дорожного просвета приводит к повышению центра тя­жести автомобиля, что может ухудшить его устойчивость.

Рис. 16.1. Габаритные параметры проходимости автомобиля: О — центр поворота

Рис. 16.2. Углы гибкости автопоезда в вертикальной (а) и горизонталь­ной (б) плоскостях

Углами переднего и заднего свеса называются углы, образован­ные плоскостью дороги и плоскостями, касательными к перед­ним и задним колесам и к выступающим низшим точкам перед­ней и задней частей автомобиля. Они характеризуют проходимость автомобиля по неровным дорогам во время въезда на препятствие или съезда с него (наезд на бугор, переезд через канаву, яму, кювет и т.д.). Чем больше углы свеса, тем более крутые дорожные неровности может преодолеть автомобиль.

Для грузовых автомобилей ограниченной проходимости

α1 =  25...42° и α2 = 16...38°,

 а для автомобилей повышенной прохо­димости

α1 = 35...55° и α2 = 32...42°.

Продольный и поперечный радиусы проходимости представляют собой радиусы окружностей, касательных к колесам и низшим точкам автомобиля в продольной и поперечной плоскостях. Эти радиусы определяют контуры препятствий, преодолевая которые автомобиль не задевает их. Чем меньше указанные радиусы, тем выше проходимость автомобиля. Так, например, продольный ра­диус проходимости для обычных грузовых автомобилей составля­ет 2,7...5,5 м, а для автомобилей повышенной проходимости — 2... 3,5 м.

Внутренний и наружный габаритные радиусы поворота — это расстояния от центра поворота соответственно до ближайшей и наиболее удаленной точек автомобиля при максимальном пово­роте управляемых колес.

Поворотная ширина автомобиля характеризует разность между его наружным и внутренним радиусами поворота.

Радиусы поворота и поворотная ширина автомобиля характе­ризуют также и маневренность автомобиля — способность пово­рачиваться на минимальной площади. Одиночные автомобили более маневренны, чем автопоезда. Маневренность автопоездов ухудша­ется при увеличении числа единиц и базы прицепного состава.

Углами гибкости в вертикальной и горизонтальной плоскостях называются углы возможного отклонения оси сцепной петли при­цепа от оси тягового крюка. Угол гибкости в вертикальной плос­кости (см. рис. 16.2) автопоезда характеризует его проходимость по неровностям дороги, а угол гибкости в горизонтальной плос­кости — способность к поворотам, т. е. его маневренность. Для ав­топоездов с двухосными прицепами углы гибкости составляют: βв не менее +62° и αгне менее ±55°, а для седельных автопоездов βв не менее ±8° и αг не менее ±80°.

16.2. Тяговые и опорно-сцепные параметры проходимости. Комплексный фактор проходимости

Эти параметры характеризуют проходимость автомобиля на мягких и твердых скользких дорогах, а также на подъемах.

Основными тяговыми и опорно-сцепными параметрами про­ходимости являются удельная мощность NУД, динамический фак­тор по тяге D, удельное давление колес на дорогу рУД и коэффици­ент сцепления колес с дорогой φх. Указанные параметры прохо­димости зависят от типа автомобиля и условий его эксплуатации.

Удельная мощность автомобиля, кВт/т, представляет собой от­ношение максимальной мощности двигателя к полной массе ав­томобиля:

Чем больше удельная мощность, тем выше проходимость авто­мобиля. Так, например, для грузовых автомобилей ограниченной проходимости удельная мощность составляет 5... 12 кВт/т, а для автопоездов должна быть не менее 5,15 кВт/т.

Динамический фактор по тяге характеризует тяговые свойства автомобиля при преодолении тяжелых участков дороги с большим сопротивлением движению. Поэтому автомобиль, работающий в тяжелых дорожных условиях, должен обладать большим динами­ческим фактором. Чем больше динамический фактор, тем меньше вероятность потери проходимости вследствие недостаточных тяго­вых свойств автомобиля. Однако значение динамического фактора по тяге ограничивается сцеплением колес с дорогой. Для реализа­ции максимального динамического фактора без буксования веду­щих колес необходимо увеличивать сцепление колес с дорогой и повышать сцепной вес автомобиля (нагрузку на ведущие колеса).

Увеличение сцепления колес с дорогой достигается выбором определенного типа шин и рисунка протектора, а повышение сцеп­ного веса — увеличением числа ведущих колес и смещением цен­тра тяжести автомобиля к ведущему мосту.

Максимальные значения динамического фактора по тяге со­ставляют 0,25...0,35 для грузовых автомобилей ограниченной про­ходимости и 0,6...0,8 — для автомобилей повышенной проходи­мости.

Для повышения проходимости автомобиля необходимо увели­чивать максимальный динамический фактор по тяге. Это может быть достигнуто применением двигателей большей мощности, установкой гидропередачи, подбором передаточных чисел транс­миссии (за счет понижающей передачи в раздаточной коробке), увеличением числа ведущих колес.

Удельное давление на опорную поверхность, МПа, характеризует проходимость автомобиля по мягким дорогам и может быть пред­ставлено в следующем виде:

где GK — нагрузка на колесо; FK — площадь контакта колеса с дорогой.

Для повышения проходимости по мягким дорогам необходимо уменьшать давление колес на дорогу. Это достигается понижени­ем давления воздуха в шинах, увеличением размеров шин, числа мостов и колес, а также применением специальных шин. Исполь­зование специальных шин уменьшает удельное давление колес на дорогу за счет увеличения площади их контакта (рис. 16.3) с опор­ной поверхностью. Так, по сравнению с обычными шинами пло­щадь контакта широкопрофильных шин больше на 20 ...40 %, ароч­ных — в 1,5 — 2 раза и пневмокатков — в 2,5 — 3 раза, причем проходимость автомобиля, оборудованного пневмокатками, при­ближается к проходимости гусеничных машин.

Удельное давление колес на дорогу зависит от типа автомоби­ля и условий его эксплуатации. Например, на дороге с асфальто­бетонным покрытием удельное давление составляет 0,16...0,55 МПа для грузовых автомобилей ограниченной проходимости и 0,2... 0,4 МПа — для автомобилей повышенной проходимости.

Коэффициент сцепления характеризует проходимость автомоби­ля по влажным грунтам и скользкой (обледенелой) дороге. Увели­чение коэффициента сцепления приводит к повышению прохо­димости автомобиля по таким дорогам.

На коэффициент сцепления значительное влияние оказывают рисунок протектора шин и его насыщенность. Коэффициент на­сыщенности рисунка протектора шины определяется как доля нагрузки, приходящейся на грунтозацепы, и выражается в про­центах.

Рис. 16.3. Шины и площади контакта шин с дорогой: а — тороидальная; б — широкопрофильная; в — арочная; г — пневмокаток

В условиях бездорожья обычно используются шины с крупны­ми и широко расставленными грунтозацепами, у которых коэф­фициент насыщенности рисунка протектора составляет 15... 25 %. Протектор таких шин не забивается грязью.

На песочном грунте используются шины с невысокими грун­тозацепами и небольшими расстояниями между ними. Коэффи­циент насыщенности рисунка протектора таких шин составляет 10 ...80%.

Для движения по скользким обледенелым дорогам применяют шины с зимним рисунком протектора или металлическими ши­пами, которые препятствуют буксованию и боковому скольже­нию (заносу) колес. В качестве временной меры, повышающей сцепление колес с дорогой, применяют различного типа цепи противоскольжения: витые, браслетные, гусеничные и др.

Комплексный фактор проходимости характеризует эффективность использования автомобиля при его эксплуатации на тяжелых до­рогах и по бездорожью. Он учитывает снижение производительно­сти автомобиля (вследствие уменьшения средней скорости дви­жения и массы перевозимого груза) и ухудшение топливной эко­номичности (из-за увеличения расхода топлива) в этих условиях эксплуатации по сравнению с шоссейными дорогами.

Комплексный фактор проходимости автомобиля

где— полезные нагрузки соответственно на тяжелых до-

рогах (по бездорожью) и шоссейных дорогах;— средние

скорости движения на таких дорогах; qМ ,  qШ   — путевой расход топлива.

16.3. Влияние различных факторов на проходимость автомобиля

На проходимость автомобиля оказывают влияние следующие конструктивные и эксплуатационные факторы.

Тип колес. Ведущее колесо преодолевает вертикальное препят­ствие лучше, чем ведомое. Это происходит потому, что ведущее колесо стремится преодолеть вертикальное препятствие, а ведо­мое колесо только упирается в него.

На рис. 16.4 представлены схемы ведомого и ведущего колес автомобиля, которые преодолевают вертикальное препятствие вы­сотой hпр.

На переднее ведомое колесо (рис. 16.4, а) в этом случае дей­ствуют вертикальная нагрузка Pz, толкающая сила Рх и реакция Rn препятствия, составляющими которой являются Rz и Rx.

Рис. 16.4. Преодоление вертикального препятствия ведомым (а) и

ведущим (б) колесами автомобиля:

P'Т ,P''Т — составляющие тяговой силы при преодолении препятствия

Исследованиями установлено, что для переднего ведомого коле­са высота преодолеваемого вертикального препятствия hк = 2/Зrк. При высоте препятствия h пр = rк переднее ведомое колесо не мо­жет преодолеть его даже при очень большой толкающей силе Рх.

На ведущее колесо (рис. 16.4, б) по сравнению с ведомым до­полнительно действует крутящий момент Мк, который вызывает появление силы РТ Составляющая Р'Т этой силы уменьшает со­ставляющую Rx реакции препятствия, противодействующую дви­жению. Составляющая P''Т тяговой силы обеспечивает ведущему колесу возможность преодоления препятствия. Исследованиями ус­тановлено, что для ведущего колеса высота преодолеваемого вер­тикального препятствия hк = rк.

Колея колес. Соотношение между колеями передних и задних колес автомобиля (рис. 16.5) имеет важное значение при движе­нии по мягким грунтам. Несовпадение колеи передних и задних колес приводит к увеличению сопротивления движению, и на­оборот. При совпадении колеи передних и задних колес проходимость повышается, так как передние колеса образуют в грунте колею, а задние колеса движутся по уже уплотненному грунту колеи.

Рис. 16.5. Колеи передних и задних колес автомобиля:

а — совпадающие; б — несовпадаю­щие; в — при двухскатных задних колесах

Обычно колеи передних и задних колес не совпадают у авто­мобилей с передними односкатными и задними двухскатными ко­лесами. Несовпадение колеи возможно и у автомобилей со всеми односкатными колесами. Для таких автомобилей разница в шири­не колеи передних и задних колес не должна превышать 25... 30 % ширины шины, иначе проходимость существенно ухудшится.

Тип подвески колес. При движении по пересеченной местнос­ти автомобилей с колесными формулами 6x4 и 6x6 исключение отрыва колес от грунта обеспечивает балансирная (рис. 16.6) или независимая подвеска. При использовании таких подвесок колеса лучше приспосабливаются к неровностям поверхности, и прохо­димость автомобиля повышается.

Гидропередача и раздаточная коробка. Применение гидропере­дач и раздаточных коробок с понижающими передачами суще­ственно повышает проходимость автомобиля особенно по мягким и влажным грунтам. Благодаря их применению достигается мини­мальная скорость движения (0,5... 1,5 км/ч) и ее плавное измене­ние. Это обеспечивает непрерывное движение в тяжелых дорож­ных условиях, что очень важно, так как автомобиль часто оста­навливается в момент переключения передач.

Тип дифференциала. Конический симметричный дифференци­ал уменьшает проходимость автомобиля, так как распределяет поровну между ведущими колесами крутящий момент, а тяговая сила на них определяется колесом с меньшим сцеплением. Это дифференциал малого трения. Трение же в дифференциале позво­ляет передавать больший крутящий момент на небуксующее ко­лесо и меньший — на буксующее. При использовании коническо­го дифференциала суммарная тяговая сила на ведущих колесах возрастает за счет трения на 4...6 %.

Червячный и кулачковый дифференциалы увеличивают про­ходимость автомобиля. Они являются дифференциалами повышен­ного трения. В случае их применения суммарная тяговая сила на ведущих колесах возрастает на 10... 15 %.

Рис. 16.6. Схема балансирной подвески колес автомобиля:

1, 3 — ведущие мосты; 2 — рессора; 4 — ось; 5 — ступица; 6 — штанга

Рис. 16.7. Колесо с регулированием давления воздуха в шине:

1 — широкопрофильная шина; 2 — вен­тиль камеры; 3 — запорный кран колеса

Блокируемые дифференциалы еще больше увеличивают про­ходимость автомобиля. При использовании таких дифференциа­лов суммарная тяговая сила на ведущих колесах возрастает на 20...25%.

Регулирование давления воздуха в шинах. Благодаря регулиро­ванию давления воздуха в шинах (рис. 16.7) существенно повы­шается проходимость автомобилей в тяжелых дорожных условиях и по бездорожью. В зависимости от дорожных условий давление воздуха в шинах может меняться в пределах 0,05 ...0,35 МПа. По­этому проходимость автомобиля, оборудованного шинами с регу­лируемым (переменным) давлением воздуха, в отдельных случаях приближается к проходимости гусеничных машин.

Рис. 16.8. Цепи противоскольжения:

Вам также может быть полезна лекция "7 Электрохимические процессы".

а — мелкозвенчатые; б — с прямыми траками; в — с ромбовидными траками; г — браслетная; д — с широкими траками

Устройства для самовытаскивания. Применение самовытаски­вающих устройств (лебедки с приводом от коробки отбора мощ­ности, лебедки самовытаскивания, монтируемые на ведущие ко­леса, и др.) позволяют значительно повысить проходимость авто­мобиля при преодолении особо тяжелых участков дороги.

Цепи противоскольжения (рис. 16.8). При установке на ведущие колеса автомобиля цепей противоскольжения различного типа (витые, браслетные, траковые, гусеничные) возрастает площадь поверхности зацепления колес с дорогой, что способствует уве­личению тяговой силы и повышению проходимости.

Так, браслетные цепи на обледенелых и размокших грунтовых дорогах с твердым основанием обеспечивают увеличение тяговой силы на ведущих колесах на 20...45 %.

Траковые цепи позволяют преодолевать снежный покров в 4 — 5 раз большей толщины, чем без них, а гусеничные цепи — слой снежного покрова вдвое большей толщины.

Однако цепи противоскольжения следует использовать только для временного повышения проходимости автомобиля на тяже­лых участках пути. При движении на твердых дорогах их необходи­мо снимать.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее