Популярные услуги

Задача по гидравлике/МЖГ
Повышение уникальности твоей работе
Любой реферат по механике жидкости и газа
Решение задач по гидравлике
КМ-4. Основы газодинамики. Расчётное задание - Выполню за вас!
Полный курс Итоговый тест - сдам за вас на отлично!
КМ-3. Гидростатика. Давление на твердую стенку. Расчётное задание - Выполню за вас!
КМ-3. Гидростатика. Давление на твердую стенку. Расчётное задание - Выполню за вас!
КМ-2. Гидростатика. Основная формула гидростатики. Расчётное задание - Выполню за вас!
Главная » Лекции » Гидравлика и пневматика » Основы гидравлики » - Кинематика и динамика жидкости

- Кинематика и динамика жидкости

2021-03-09СтудИзба

3 КИНЕМАТИКА И ДИНАМИКА ЖИДКОСТИ

3.1 Основные понятия и определения

Уравнения кинематики и динамики жидкости весьма значительно отличаются от аналогичных уравнений для твердого тела. Это вызвано, прежде всего, особенностями исследуемого объекта - жидкости, частицы которой не имеют жесткой связи между собой. Отсутствие жесткой связи существенно усложняет рассмотрение процессов, происходящих в жидкости. Для упрощения изучения течений в гидромеханике широко используется так называемая идеальная жидкость. Под этим термином понимают гипотетическую несжимаемую жидкость, в которой отсутствуют силы межмолекулярного взаимодействия, то есть отсутствует вязкость. Тогда происходящие явления сначала исследуются применительно к идеальной жидкости, а затем полученные закономерности переносятся с введением корректирующих поправок на потоки реальных жидкостей.

Течение жидкости, как и любое другое движение, может быть установившимся и неустановившимся. Установившимся называется течение, при котором все физические параметры (скорость, давление и другие) зависят только от координат точки и остаются неизменными во времени, то есть р = f1 (х,y,z), υ = f2 (х,y,z), . Примером установившегося течения может служить истечение через отверстие в дне сосуда, в котором поддерживается постоянный уровень жидкости, или движение жидкости в трубопроводе, создаваемое центробежным насосом с постоянной частотой вращения вала. В частном случае установившееся течение может быть равномерным, когда скорость каждой частицы не изменяется с изменением ее координаты, и поле скоростей остается неизменным вдоль потока. При неустановившемся течении физические параметры потока (или некоторые из них) изменяются в пространстве и во времени. В общем случае неустановившегося течения давление и скорость зависят как от координат, так и от времени: р = F1 (х,y,z,τ),    v = F2 (х,y,z,τ). Для примера можно привести рассматриваемое выше истечение, но без поддержания постоянного уровня жидкости в сосуде, то есть истечение до полного опорожнения или в напорной трубе поршневого насоса, поршень которого совершает возвратно-поступательное движение. В дальнейшем будут рассматриваться в основном установившиеся течения жидкости.

Для описания движения в механике жидкости существуют разные подходы, в которых рассматриваются различные модели сплошной среды и соответствующие им уравнения движения (Коши, Эйлера и другие). В машиностроительной гидравлике поток жидкости принято представлять как совокупность элементарных замкнутых объемов, движущихся совместно. Важное значение в этой модели имеет понятие «линия тока». Под этим термином понимают условную линию в потоке жидкости, проведенную так, что вектор скорости в любой ее точке направлен по касательной (линия 1 на рисунке 3.1). При установившемся течении линия тока совпадает с траекторией движения частицы жидкости. Необходимо также отметить, что при установившемся течении в любой точке потока существует только одна (неизменная во времени) скорость. Поэтому через данную точку может проходить только одна линия тока. Следовательно, линии тока при установившемся течении не могут пересекаться.

Если в потоке жидкости взять бесконечно малую замкнутую линию 2 (смотри рисунок 3.1), состоящую из множества точек, и через каждую из этих точек провести линию тока 3, то множество этих линий образуют трубчатую поверхность. Такую поверхность принято называть трубкой тока, а часть потока внутри этой поверхности — элементарной струйкой.

Как было отмечено ранее, при установившемся течении линии тока не пересекаются и, следовательно, ни одна линия тока не может пронизывать трубку тока (иначе она пересечет одну из линий, образующих эту трубку). Следовательно, ни одна частица жид­кости не может проникнуть внутрь трубки тока или выйти из нее. Таким образом, выделенная трубка тока при установившемся течении является непроницаемой стенкой для жидкости.

Сечениями потока (или струйки) жидкости принято называть поверхности, нормальные к линиям тока. Например, поверхность dS1, ограниченная замкнутым контуром 2 (затемнена на рисунке 3.1), является сечением для элементарной струйки. При параллельно-струйном течении сечения представляют собой плоскости, перпендикулярные направлению движения жидкости. Сечения потоков или струй жидкости иногда также называют живыми сечениями.

Различают напорные и безнапорные течения жидкости. Напорными называют течения в закрытых руслах без свободной поверхности, а безнапорными — течения со свободной поверхностью. Примерами напорного течения могут служить течения в трубопро­водах, гидромашинах, гидроаппаратах. Безнапорными являются течения в реках, открытых каналах. В данном учебном пособии рассматриваются в основном напорные течения жидкости.

Рекомендуемые материалы

3.2 Расход. Уравнение расхода

Расход — это количество жидкости, которое протекает через данное сечение в единицу времени. Количество жидкости можно измерять в единицах объема, массы или веса. Поэтому различают объемный Q 3/с), массовый QЬкг/с) и весовой QG (Н/с) расходы.

            Для элементарной струйки, имеющей бесконечно малые площади сечений, можно считать скорость υ одинаковой во всех точках сечения. Следовательно, объемный расход для элементарной струйки dQ = υ dS.

Основываясь на законе сохранения вещества и полагая, что течение внутри элементарной струйки является сплошным и неразрывным, можно утверждать, что для установившегося течения несжимаемой жидкости 

dQ = υ1 dS1 = υ2 dS2 = const.                                          (3.1)

            Это уравнение называется уравнением объемного расхода для элементарной струйки.

            Для потока конечных размеров скорость в общем случае имеет различные значения в разных точках сечения, поэтому расход определяют как сумму элементарных расходов струек, составляющих поток.

                                                                     (3.2)

            На практике удобнее определять расход через среднюю по сечению потока скорость υср = Q / S, откуда Q = υср ·S.

            Очевидно, что и для потока конечных размеров при условии его сплошности и неразрывности будет выполняться условие постоянства объемного расхода вдоль потока, то есть

                                                            Q = υср1 ·S1 = υср2 ·S2 = const.                                          (3.3)

            Из последнего уравнения следует, что средние скорости в потоке несжимаемой жидкости обратно пропорциональны площадям сечений

                                                                        .                                                          (3.4)

            Полученные уравнения расходов (3.1) и (3.3) являются следствием общего закона сохранения вещества.

3.3 Уравнение Бернулли для элементарной струйки идеальной жидкости

Рассмотрим установившееся течение элементарной струйки идеальной жидкости, находящейся под действием лишь одной массовой силы — силы тяжести (рисунок 3.2). В рассматриваемом случае в жидкости могут действовать нормальные напряжения сжатия (давление), но не могут действовать касательные напряжения (трение), так как у жидкости отсутствует вязкость.

Для вывода уравнения Бернулли выберем два сечения 1—1 и 2—2, а также произвольную горизонтальную поверхность О—О. Будем считать, что в сечении 1—1 площадью dS1  скорость жидкости υ1 и действует давление р1, а его центр тяжести располагается на высоте z1 относительно выбранной поверхности 0 - 0. Сечение 2—2 характеризуется аналогичными параметрами, но с индексом «2» (dS2, υ2, р2 и z2).

Пусть за время участок струйки, ограниченный сечениями 1—1 и 2—2, сдвинулся и занял новое положение, ограниченное сечениями 1'—1' и 2'—2'. Тогда первое сечение переместилось на расстояние dl1, а второе сечение — на расстояние dl2. При этом можно условно считать, что часть ограниченного объема жидкости осталась на месте (объем между сечениями 1—1 и 2—2), а другая часть между сечениями 1—1 и 1'—1' (на рисунке 3.2 затемнена) переместилась на место между сечениями 2—2 и 2'—2' (на рисунке 3.2 также затемнена), т. е. объемы затемненных участков равны:

.

Следовательно, равны и массы этих объемов (dm), а также одинаковы их веса (dG).

Для вывода уравнения Бернулли применим к жидкому телу, находящемуся между сечениями 1— 1 и 2—2, теорему механики об изменении кинетической энергии, согласно которой изменение кинетической энергии тела равно работе сил, приложенных к этому телу.

Как следует из сказанного ранее, кинетическая энергия участка жидкости между сечениями 1'—1' и 2—2 за время не изменилась, так как этот участок условно можно считать неподвижным. Тогда изменение кинетической энергии всего жидкого тела будет определяться разностью кинетических энергий выделенных объемов (участков, затемненных на рисунке 3.2), а точнее, изменением их скоростей, так как их массы одинаковы, т. е.

Работу за отмеченный промежуток времени совершают силы тяжести и силы давления. При оценке работы сил тяжести также будем учитывать условную неподвижность участка жидкости между сечениями 1'—1' и 2—2. Тогда работа сил тяжести AG определится перемещением веса dG на расстояние (z1z2):

AG =dG (z1z2).

Работа сил давления Ap будет складываться из двух величин: (работы положительной силы и работы отрицательной силы). Первая, равная произведению давления pl на площадь dS1, способствует сдвигу сечения 1—1 на расстояние dl1, а вторая, равная произведению давления р2 на площадь dS2, препятствует перемещению сечения 2—2 на расстояние dl2, то есть

.

Приравняв сумму работ сил тяжести AG и давления Ap к изменению кинетической энергии тела Ек, получим

.

Разделим каждый член последнего уравнения на вес dG. После математических преобразований, учитывая, что dG = dm·g = dV·ρ·g, получим

,                                               (3.5)

где z – геометрический напор, м;

     р / ρ·gпьезометрический напор, м;

     υ2 / 2g – скоростной напор, м.

Полученное уравнение называется уравнением Бернулли для элементарной струйки идеальной жидкости. Оно было получено Даниилом Бернулли в 1738 году.

Трехчлен вида

называется полным напором.

            Уравнение Бернулли (3.5) записано для двух произвольно выбранных сечений. Очевидно, что для любого другого сечения этой же струйки полный напор будет иметь то же значение:

.

            Таким образом, для идеальной движущейся жидкости  сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная вдоль струйки.

3.4 Геометрическая и энергетическая иллюстрация уравнения Бернулли

Рассмотрим элементарную струйку идеальной жидкости, показанную на рисунке 3.3. Измерим величины геометрического, пьезометрического и скоростного напоров в сечениях  1- 1, 2 - 2 и 3 - 3.

Как видно из рисунка, сумма трех напоров, представляющая собой полный напор, во всех сечениях будет одинакова, а линия полного напора параллельна произвольной горизонтальной плоскости сравнения, то есть тоже горизонтальна. Если соединить поверхности жидкости в пьезометрах, установленных вдоль потока плавной линией, то получим геометрическое место точек, называемое пьезометрической линией.

Величина пьезометрического напора зависит от размеров сечения. Из уравнения Бернулли и уравнения расхода следует, что если площадь поперечного сечения струйки уменьшается, т. е. струйка сужается, то скорость течения жидкости увеличивается, а давление уменьшается, и наоборот, если струйка расширяется, то скорость уменьшается, а давление возрастает.

На рисунке 3.3 в виде примера показана струйка, площадь поперечного сечения которой от сечения 1 — 1 к сечению 2 — 2 уменьшается в 4 раза, в связи, с чем скоростной напор увеличивается в 16 раз, а сечение 3 — 3 имеет ту же площадь, что и сечение 1 — 1. Штриховой линией показана пьезометрическая линия при увеличении расхода еще в  раз, вследствие чего скоростные высоты увеличиваются в два раза, а в узкой части струйки давление становится меньше атмосферного, т.е. возникает вакуум.

Уравнение Бернулли можно записать в другой форме. Помножив уравнение (3.5) на ускорение свободного падения g ,  получим

                                                              (3.6)

Рассмотрим энергетический смысл уравнения Бернулли, записанный в форме (3.6). Условимся называть удельной энергией жидкости энергию, отнесенную к единице массы.

Нетрудно показать, что члены этого уравнения являются различными формами удельной механической энергии жидкости, а именно:

gz — удельная потенциальная энергия положения,

р/ρ— удельная потенциальная энергия давления движущейся жидкости,

υ2/2 — удельная кинетическая энергия жидкости,

  - полная удельная механическая энергия движущейся жидкости.

Таким образом, энергетический смысл уравнения Бернулли для элементарной струйки идеальной жидкости заключается в постоян­стве вдоль струйки полной удельной энергии жидкости. Следовательно, уравнение Бернулли выражает закон сохранения механической энергии в идеальной жидкости. Механическая энергия движущейся жидкости может иметь три формы: энергия положения, давления и кинетическая энергия. Первая и третья формы механической энергии известны из механики, и они в равной степени свойственны твердым и жидким телам. Энергия давления является специфической для движущихся жидкостей и газов. В процессе движения идеальной жидкости одна форма энергии может превращаться в дру­гую, однако полная удельная энергия при этом, как следует из уравнения Бернулли, остается без изменений.

Как всякая форма энергии - энергия давления легко преобразуется в механическую работу. Простейшим устройством, с помощью которого осуществляют такое преобразование, является цилиндр с поршнем (рисунок 3.4). При подаче жидкости под давлением в левую полость цилиндра поршень со штоком будет перемещаться вправо, преодолевая усилие, приложенное к штоку, таким образом совершать полезную работу.

3.5 Уравнение Бернулли для потока реальной жидкости

Пусть поток реальной жидкости, обладающей вязкостью, движется в русле, ограниченном неподвижными стенками. При этом вследствие трения между слоями жидкости существенно возрастает неравномерность распределения скоростей по сечению потока (рисунок 3.5), а также возникают потери энергии на трение при перемещении жидкости от одного сечения к другому. Кроме того, движение вязкой жидкости часто сопровождается вращением частиц, вихреобразованием и перемешиванием, что тоже требует затрат энергии. Поэтому удельная энергия движущейся вязкой жидкости не остается постоянной, как в случае идеальной жидкости, а постепенно расходуется на преодоления сопротивлений, и, следовательно, уменьшается вдоль потока.

Получим уравнение Бернулли для потока реальной жидкости, основываясь на том, что оно является законом сохранения энергии для движущейся жидкости. Вывод этого уравнения проведем в два этапа. На первом этапе учтем неравномерность распределения скоростей по сечению потока, а на втором учтем и потери энергии.

При выводе будем считать, что в пределах выбранных сечений гидростатический напор остается постоянным:

.                                                              (3.7)

Это справедливо для сечений с параллельно струйным течением жидкости, т. е. когда эти сечения являются плоскими. Поэтому уравнение, которое будет получено ниже, может использоваться только для плоских или близких к ним сечений.

На первом этапе определим формулу для вычисления мощности N потока реальной жидкости в его сечении. Вычисление этого параметра затруднено тем, что из-за перераспределения скоростей (см. рисунок 3.5),разные слои жидкости несут различное количество энергии. Для определения мощности N в сечении (например, в сечении 1— 1 на рисунке 3.5) выберем струйку жидкости бесконечно малой поперечной площади dS, в пределах которой скорость жидкости будем считать постоянной, равной υ. Тогда полный напор (или полная удельная энергия) в сечении струйки

.                                                         (3.8)

Мощность струйки dN в сечении площадью dS равна произведению удельной энергии Н и веса жидкости, которую проносит  поток через это сечение в единицу времени, т.е. элементарного весового расхода dQG. Тогда с учетом (3.6) и (3.1) получим математическую зависимость для мощности струйки:

.                                       (3.9)

Мощность всего потока в сечении найдем, просуммировав мощности всех элементарных струек, т. е. вычислив интеграл по площади S от выражения (3.9):

.

После математических преобразований зависимость для мощности потока реальной жидкости принимает следующий вид:

,                                           (3.10)

где α – безразмерный коэффициент, определяемый по формуле

.                                                    (3.11)

Этот коэффициент, называемый коэффициентом Кориолиса, учитывает неравномерность распределения скорости жидкости в сечении реального потока. Если числитель и знаменатель в формуле (3.11) умножить на ρ/2, то станет очевидно, что коэффициент α есть отношение действительной кинетической энергии реального потока в данном сечении к кинетической энергии того же потока в том же сечении, но посчитанной по средней скорости жидкости в данном сечении. В этом заключается физический смысл коэффициента Кориолиса.

Алгебраическое выражение, ограниченное скобками в (3.10), принято называть средним значением полного напора в сечении реального потока, т.е.

.                                                                                                             (3.12)

Средний напор Нср широко используется в практических расчетах, так как является важнейшим параметром, характеризующим механическую энергию (или мощность) потока реальной жидкости. Для подтверждения этого решим уравнение (3.10) относительно Hср с учетом (3.12). Тогда получим

.                                                       (3.13)

Из анализа зависимости (3.13) следует, что при постоянном расходе Q средний напор Hср пропорционален мощности N и в пределах данного потока однозначно определяет эту мощность. Поэтому средний напор Hср, вычисляемый с учетом неравномерности распределения скоростей в сечении по формуле (3.12), в дальнейшем будем использовать в качестве основного параметра, характеризующего механическую энергию потока реальной жидкости.

Учтем теперь потери энергии, возникающие при движении жидкости. В реальных потоках из-за этих потерь среднее значение полного напора в конечном сечении всегда меньше, чем в начальном сечении, т.е. H ср1 > H ср2. Поэтому при записи уравнения баланса энергий (средних напоров) в его правую часть добавляют слагаемое , учитывающее потери удельной энергии. Тогда уравнение баланса принимает вид

,

или с учетом (3.12)

,                   (3.14)

Уравнение (3.14) носит название уравнения Бернулли для потока реальной жидкости.

Сравним уравнение Бернулли для струйки идеальной жидкости (3.6) и уравнение для потока реальной жидкости (3.14). Из этого сравнения следует, что в последнем уравнении дополнительно присутствуют α и .

При равномерном распределении скоростей по сечению потока α = 1 (поток идеальной жидкости). В потоках реальной жидкости коэффициент Кориолиса в большинстве случаев лежит в пределах 1 < α < 2.

Суммарная потеря полного напора  на участке между начальным и конечным сечениями складываются из суммы потерь удельной энергии во всех гидравлических сопротивлениях, расположенных на рассматриваемом участке потока. В гидравлике эти потери энергии принято делить на две группы: местные потери и потери на трение по длине.

Местные потери hм - это потери в так называемых местных гидравлических сопротивлениях, к которым относятся поворот, сужение или расширение потока, а также различные гидравлические устройства (вентили, жиклеры и т.д.). Потери в большинстве этих сопротивлений вызваны вихреобразованием. Как показывает практика, они пропорциональны квадрату скорости жидкости, а для оценки их величины используется формула Вейсбаха

,                                                                              (3.15)

где ζ — безразмерный коэффициент, определяющий потери в данном местном сопротивлении;

      υсрсредняя скорость в трубопроводе, в котором установлено местное сопротивление.

Второй вид гидравлических потерь - потери на трение по длине hтр — это потери, которые имеют место в длинных прямых трубах постоянного сечения. Потери на трение по длине вызваны как внутренним трением в жидкости, так и трением о стенки трубы. Эти потери пропорциональны длине трубы l и обратно пропорциональны ее диаметру d. Они имеют достаточно сложную зависимость от средней скорости жидкости (это будет рассмотрено позднее), но во всех случаях для их оценки может быть использована универсальная для гидравлики формула Дарси

,                                                                         (3.16)

где λ  — безразмерный коэффициент потерь на трение по длине, который принято называть коэффициентом Дарси.

Следует отметить, что определение потерь энергии при расчете гидравлических систем является одной из наиболее важных проблем гидравлики.

3.6 Примеры использования уравнения Бернулли в технике

Уравнение Бернулли широко применяется в технике, как для выполнения гидравлических расчетов, так и для решения ряда практических задач. Одной из таких задач является измерение скорости и расхода жидкости. Рассмотрим некоторые устройства для измерения расхода и скорости жидкости.

Расходомер Вентури представляет собой устройство, устанавливаемое в трубопроводах и осуществляющее сужение потока - дросселирование (рисунок 3.6). Расходомер состоит из двух участков - плавно сужающегося (сопла) и постепенно расширяющегося (диффузора). Скорость потока в суженном месте возрастает, а давление падает. Возникает разность (перепад) давлений, которая измеряется двумя пьезометрами или дифференциальным U-образным манометром и определенным образом связана с расходом. Найдем эту связь. Допустим в сечении 1-1 потока непосредственно перед сужением скорость потопа равна υ1, давление р1, площадь сечении S1, а в сечении 2-2, т. е. в самом узком месте потока, соответственно υ2, р2, S2. Разность показаний пьезометров, присоединенных к указанным сечениям ΔН.

Запишем для сечений 1—1 и 2—2 потока уравнение Бернулли и уравнение расхода (считая распределение скоростей равномерным):

где hм — потеря напора между сечениями 1-1 и 2-2.

Учитывая, что

 и

найдем из этой системы уравнений одну из скоростей, например

,

отсюда объемный расход

                                                (3.17)

или ,                                                        (3.18)

где С – величина, постоянная для данного расходомера.

Зная величину С и наблюдая за показанием пьезометра, можно найти расход в трубопроводе для любого момента временя по формуле (3.18). Константу С можно определить теоретически, но точнее ее можно найти экспериментально, т. е. в результате градуирования расходомера.

Связь между ΔН и Q получается параболической, а если по оси абсцисс откладывать расход во второй степени, то график этой зависимости будет представлять собой прямую.

Очень часто вместо пары пьезометров для измерения перепада давления в расходомере применяют дифференциальный ртутный манометр. Учитывая, что над ртутью в трубках находится та же жидкость плотностью ρ, можно записать


Трубка полного напора (или трубка Пито) служит для измерения скорости, например, в трубе (рисунок 3.7). Если установить в этом потоке трубку, изогнутую под углом 90°, отверстием навстречу потоку и пьезометр, то жидкость в этой трубке поднимается над уровнем в пьезометре на высоту, равную скоростному напору. Объясняется это тем, что скорость υ частиц жидкости, попадающих в отверстие трубки, уменьшается до нуля, а давление, следовательно, увеличивается на величину скоростного напора. Измерив разность высот подъема жидкости в трубке Пито и пьезометре, легко определить скорость жидкости в данной точке.

На этом же принципе основано измерение скорости полета самолета. На рисунке 3.7 показана схема самолетной скоростной трубки (насадка) для измерения малых по сравнению со скоростью запуска скоростей полета.

Запишем уравнение Бернулли для струйки, которая набегает на трубку вдоль ее оси, а затем растекается по ее поверхности. Для  сечений  0-0  (невозмущенный  поток)  и  1-1  (где

υ = 0), получаем

Так как боковые отверстия трубки приближенно воспринимают давление невозмущенного потока, р2 ≈ р0, следовательно из предыдущего имеем

.

Другим важным случаем практического использования уравнения Бернулли является создание топливно-воздушной смеси для двигателей внутреннего сгорания с помощью карбюратора и эжектора.

Карбюратор поршневых двигателей внутреннего сгорания служит для подсоса бензина и смешения его с потоком воздуха (рисунок 3.9). Поток воздуха; засасываемого в двигатель, сужается в том месте, где установлен распылитель бензина (обрез трубки диаметром d). Скорость воздуха в этом сечении возрастает, а давление по закону Бернулли падает. Благодаря пониженному давлению бензин вытекает в поток воздуха.

Найдем соотношение между массовыми расходами бензина Qб и воздуха Qв при заданных размерах D и d и коэффициентах сопротивления воздушного канала (до сечения 2-2) ζв и жиклера ζж (сопротивлением бензотрубки пренебрегаем).

Записав уравнение Бернулли для потока воздуха (сечение 0-0 и 2-2), а затем для потока бензина (сечение 1-1 и 2-2), получим (при z1 = z2 и α = 1):

откуда

Учитывая, что массовые расходы  и , получим

Таким образом обеспечивается постоянство соотношения расходов бензина и воздуха. Однако следует иметь в виду приближенный характер данного решения

Струйный насос (эжектор) состоит из плавно сходящегося насадка А (рисунок 3.10), осуществляющего сжатие потока, и постепенно расширяющейся трубки С, установленной на некотором расстоянии от насадка в камере В. Вследствие увеличения скорости потока давление в струе на выходе из насадка и по всей камере В и значительно понижается. В расширяющейся трубке скорость уменьшается, а давление возрастает приблизительно до атмосферного (если жидкость вытекает в атмосферу), следовательно, в камере В давление обычно меньше атмосферного, т.е. возникает разрешение (вакуум). Под действием разрежения жидкость из нижнего резервуары всасывается по трубе D в камеру В, где происходят слияние и дальнейшее перемешивание двух потоков.

3.7 Режимы течения жидкости в трубах

Опыты показывают, что возможны два режима или два вида течения жидкостей и газов в трубах: ламинарный и турбулентный.

Указанные течения жидкости можно наблюдать на приборе, представленном на рисунке 3.11. Он состоит из резервуара А с водой, от которого отходит стеклянная труба В с краном С па конце, и сосуда D с индикаторной подкрашенной жидкостью, которая может по трубке вводиться тонкой струйкой внутрь стеклянной трубы В.


Если несколько приоткрыть кран С и дать возможность воде протекать в трубе с небольшой скоростью, а затем с помощью крана Е впустить индикаторную жидкость  в поток воды, то увидим, что введенная в трубу подкрашенная жидкость  не будет перемешиваться с потоком воды. Струйка краски будет отчетливо видимой вдоль всей стеклянной трубы, что указывает на слоистый характер течения жидкости и на отсутствие перемешивания. Пьезометр или трубка Пито, присоединенные к трубе, покажут неизменность давления и скорости по времени, отсутствие колебаний (пульсаций). Это так называемое ламинарное (слоистое) течение.

При постепенном увеличении скорости течения воды в трубе путем открытии крана С картина течения вначале не меняется, но затем при определенной скорости течения наступает быстрое ее изменение. Струйка подкрашенной жидкости по выходе из трубки начинает колебаться, затем размываться и перемешиваться с потоком воды, причем становятся заметными вихреобразования и вращательное движение жидкости. Пьезометр и трубка Пито показывают непрерывные пульсации давления и скоростей в потоке воды. Течение становится, как его принято называть, турбулентным (см. рисунок3.11, вверху).

Если уменьшить скорость потока, то восстановится ламинарное течение.

Итак, ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсаций скоростей и давления. При таком течении все линии тока определяются формой русла, по которому течет жидкость. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, т. е. прямолинейно; отсутствуют поперечные перемещения жидкости.

Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. При турбулентном течении векторы скоростей имеют не только осевые, но и нормальные составляющие, поэтому наряду с основным продольным перемещением жидкости вдоль русла происходят поперечные перемещения (перемешивание) и вращательное движение отдельных объемов жидкости.

Режим течения данной жидкости в данной трубе изменяется при вполне определенной средней по сечению скорости течения υ кр, которую называют критической. Как показывают опыты, значение этой скорости прямо пропорционально кинематической вязкости v и обратно пропорционально диаметру d трубы, т. с.

.

Входящий в эту формулу безразмерный коэффициент пропорциональности k одинаков для всех жидкостей и газов, а также для любых диаметров труб. Это означает, что изменение режима течения происходит при определенном соотношении между скоростью, диаметром и вязкостью v:

k = υкр d/v.

Полученное безразмерное число называется критическим числом Рейнольдса и обозначается

Reкр = υкр d/v.                                                                                                                             (3.19)

Критическое число Рейнольдса Reкр  не зависит от рода жидкости и размеров сечения, а лишь в небольшой степени определяется формой сечения и шероховатостью стенок трубы.

Таким образом, критическое число Рейнольдса является критерием, определяющим режим течения в трубах.

Как показывают опыты, для труб круглого сечения Reкр ≈ 2300.

Зная скорость движения жидкости, ее вязкость и диаметр трубы, можно расчетным путем найти число Re и, сравнив его с Reкр , определить режим течения жидкости.

При Re < Reкр течение является ламинарным, при Re > Reкр — турбулентным. Точнее говоря,  вполне  развитое  турбулентное  течение  в  трубах  устанавливается  лишь  при

Re ≥ 10000, а при Re = 2300 … 10000 имеет место переходная, критическая область.

На практике имеют место как ламинарное, так и турбулентное течения, причем первое наблюдается в основном в тех случаях, когда по трубам движутся весьма вязкие жидкости, например смазочные масла, второе обычно происходит в водопроводах, а также в трубах, по которым перетекают бензин, керосин, спирты, кислоты и другие маловязкие жидкости.

3.8 Теория ламинарного течения в круглых трубах

Как указывалось ранее, ламинарное течение является строго упорядоченным, слоистым течением без перемешивания жидкости. Теория ламинарного течения жидкости основывается на законе трения Ньютона. Это трение между слоями движущейся жидкости является единственным источником потерь энергии в данном случае.

Рассмотрим установившееся ламинарное течение жидкости в прямой круглой цилиндрической трубе с внутренним диаметром d = 2r0. Чтобы исключить влияние силы тяжести и этим упростить вывод, допустим, что труба расположена горизонтально. Достаточно далеко от входа в нее, где поток уже вполне сформировался (стабилизировался), выделим отрезок длиной l между сечениями 1-1 и 2-2.

Пусть в сечении 1-1 давление равно р1, а в сечении 2-2 р2.Ввиду постоянства диаметра трубы, скорость жидкости будет постоянной, а коэффициент а будет неизменным вдоль потока вследствие его стабильности, поэтому уравнение Бернулли для выбранных сечении примет вид

,

где hтр — потеря напора на трение по длине.

Отсюда

,

Подпись: &#13;&#10;&#13;&#10;Рисунок 3.12 - Схема ламинарного течения жидкости в трубе&#13;&#10;

что и показывают пьезометры, установленные в этих сечениях.

В потоке жидкости выделим цилиндрический объем радиусом r, соосный с трубой и имеющий основания в выбранных сечениях. Запишем уравнение равномерного движения выделенного объема жидкости в трубе, т.е. равенство нулю суммы сил, действующих на объем: сил давления и сопротивления. Обозначая касательное напряжение на боковой поверхности цилиндра через τ, получим

откуда

Из формулы следует, что касательные напряжения в поперечном сечении трубы изменяются по линейному закону в функции радиуса. Эпюра касательного напряжения показана на рисунке 3.12, слева.

Выразим касательное напряженно τ по закону трения Ньютона через динамическую вязкость и поперечный градиент скорости; при этом заменим переменное у (расстояние от стенки) текущим радиусом r:

Знак минус обусловлен тем, что направление отсчета r (от оси к стенке) противоположно направлению отсчета у (от стенки).

Подставляя значение τ в предыдущее уравнение, получаем

.

Найдем отсюда приращение скорости

При положительном приращении радиуса получается отрицательное приращение (уменьшение) скорости, что соответствует профилю скоростей, показанному на рисунке 3.12.

Выполнив интегрирование, получим

Постоянную интегрирования С найдем из условия, что на стенке при r = r0 υ = 0:

,

тогда скорость по окружности радиусом r

.                                                         (3.20)

Это выражение является законом распределения скоростей по сечению круглой трубы при ламинарном течении. Кривая, изображающая эпюру скоростей, является параболой второй степени.

Максимальная скорость, имеющая место в центре сечения (при r = 0),

.                                                               (3.21)

Входящее в формулу (3.20) отношение pтр/l (см. рисунок 3.12) представляет собой гидравлический (пьезометрический) уклон, умноженный на ρg. Эта величина является постоянной вдоль прямой трубы постоянного диаметра.

Применим полученный закон распределения скоростей, описываемый уравнением (3.20) для расчета расхода. Для этого выразим сначала элементарный расход через бесконечно малую площадку dS:

Здесь  есть функция радиуса, определяемая формулой (3.20), а площадку dS целесообразно взять в виде кольца радиусом r и шириной dr, тогда

После интегрирования по всей площади поперечного сечения, т.е. от r = 0 до r = r0

                                          (3.22)

Среднюю по сечению скорость найдем делением расхода на площадь. С учетом выражения (3.22) получим

                                     (3.23)

Сравнение этого выражения с формулой (3.20) показывает, что средняя скорость при ламинарном течении в 2 раза меньше максимальной:

Для получения закона сопротивления, т.е. выражения потери напора hтр на трение через расход и размеры трубы, определим pтр из формулы (3.22)

Разделив это выражение на ρg, заменив µ на νρ и pтр на hтрρg, а также перейдя от r0 к

d = 2r0, найдем

                                         (3.24)

Полученный закон сопротивления показывает, что при ламинарном течении в трубе круглого сечения потеря напора на трение пропорциональна расходу и вязкости в первой степени и обратно пропорциональна диаметру в четвертой степени. Этот закон, обычно называемый законом Пуазейля, используется для расчета трубопроводов с ламинарным течением.

Заменим в формуле (3.24) расход произведением . После сокращений получим

                                                             (3.25)

Данное выражение известно как закон Стокса. Приведем закон сопротивления Стокса к виду формулы Вейсбаха-Дарси:

.                                                                      

Для этого умножим и разделим формулу (3.25) на , перегруппировав сомножители, после сокращений получим

,

откуда следует, что при ламинарном режиме

.                                                                (3.26)

где λл — коэффициент потерь на трение для ламинарного течения:

Изложенная теория ламинарного течения жидкости в круглой трубе хорошо подтверждается опытом, и выведенный закон сопротивления обычно не нуждается в каких-либо поправках, за исключением следующих случаев:

1) при течении в начальном участке трубы, где происходит постепенное формирование параболического профиля скоростей;

2) при течении с теплообменом;

3) при течении в капиллярах и зазорах с облитерацией;

4) при течении с большими перепадами давления.

Участок от начала трубы, на котором формируется (стабилизируется) параболический профиль скоростей, называется начальным участком течения (lнач). За пределами этого участка имеем стабилизированное ламинарное течение, параболический профиль скоростей остается неизменным, как бы ни была длинна труба, при условии сохранения ее прямолинейности и постоянства сечения. Изложенная выше теория ламинарного течения справедлива именно для этого стабилизированного ламинарного течения и неприменима в пределах начального участка.

Рисунок 3.13 - Формирование профиля скоростей на начальном участке


Для определения длины начального участка можно пользоваться приближенной формулой Шиллера, выражающей эту длину, отнесенную к диаметру трубы, как функцию числа Re:

.                                                       (3.27)

Сопротивление на начальном участке трубы получается больше, чем на последующих участках. Объясняется это тем, что значений производной /dy у стенки трубы на начальном участке больше, чем на участках стабилизированного течения, а потому больше и касательное напряжение, определяемое законом Ньютона, и притом тем больше, чем ближе рассматриваемое сечение к началу трубы, т.е. чем меньше координата x.

Потеря напора на участке трубы, длина которого l  lнач, определяется по формуле

                                                  (3.28)

Закономерности ламинарного течения с теплообменом и большими перепадами давления подробно рассмотрены в [1].

3.9 Турбулентное течение

3.9.1 Основные сведения

Турбулентное течение характеризуется перемешиванием жидкости, пульсациями скоростей и давлений. Если с помощью особо чувствительного прибора-самописца измерить и записать пульсации, например, скорости по времени в фиксированной точке потока, то получим картину, подобную показанной на рисунке 3.14. Скорость беспорядочно колеблется около некоторого осредненного υоср по времени значения, которое в данном случае остается постоянным.

Траектории частиц, проходящих через данную неподвижную точку пространства в разные моменты времени, представляют собой кривые линии различной формы, несмотря на прямолинейность трубы. Характер линий тока в трубе в данный момент времени также отличается большим разнообразием (рисунок 3.15).

Рисунок 3.14 -  Пульсация скорости в турбулентном потоке


Рисунок 3.15 - Характер линий тока в турбулентном потоке

Таким образом турбулентное течение всегда является неустановившимся, так как значения скоростей и давлений, а также траектории частиц, изменяются по времени. Однако его можно рассматривать как установившееся течение при условии, что осредненные по времени значения скоростей и давлений, а также полный расход потока не изменяются со временем. Такое течение на практике считают приближенно стационарным или квазистационарным.

Распределение скоростей (осредненных по времени) в поперечном сечении турбулентного потока существенно отличается от того, которое характерно для ламинарного течения. Если сравним кривые распределения скоростей в ламинарном и турбулентном потоках в одной и той же трубе и при одном и том же расходе (одинаковой средней скорости), то обнаружим существенное различие (рисунок 3.16). Распределение скоростей при турбулентном течения более равномерное, а нарастание скорости у стенки более крутое, чем при ламинарном течении, для которого характерен параболический закон распределения скоростей.

В связи с этим коэффициент Кориолиса α, учитывающий неравномерность распределения скоростей в уравнении Бернулли при турбулентном течении значительно меньше, нежели при ламинарном. В отличие от ламинарного течения, где α не зависит от Re и равен 2, здесь коэффициент α является функцией Re и уменьшается с увеличением последнего от 1,13 при Re = Reкр до 1,025 при Re = 3·106. Как видно из графика, приведенного на рис. 3.17, кривая α при возрастании числа Re приближается к единице, поэтому в большинстве случаев при турбулентном течении можно принимать α = 1.

Так как при турбулентном течении отсутствует слоистость потока и происходит перемешивание жидкости, закон трения Ньютона в этом случае выражает лишь малую часть полного касательного напряжения. Благодаря перемешиванию жидкости и непрерывному переносу количества движения в поперечном направлении касательное напряжение τ0 на стенке трубы в турбулентном потоке значительно больше, чем в ламинарном, при тех же значениях числа Re и динамического давления ρυ2/2, подсчитанных по средней скорости потока.

Рисунок 3.17 - Зависимость коэффициента α от lg Re

Рисунок 3.16 - Профили скоростей в ламинарном и турбулентном потоках


В связи с этим потери энергии при турбулентном течении жидкости в трубах также получаются иными, нежели при ламинарном. В турбулентном потоке при Re > Reкp потери напора на трение по длине значительно больше, чем при ламинарном течении при тех же размерах трубы, расходе и вязкости жидкости, а следовательно, при одинаковых числах Re (ламинарный режим при этом неустойчив).

Если при ламинарном течении потеря напора на трение возрастает пропорционально скорости (расходу) в первой степени, то при переходе к турбулентному течению заметны некоторый скачок сопротивления и затем более крутое нарастание величины hтр по кривой, близкоПодпись: Рисунок 3.18 - Зависимость hтр от &#965; и Qй к параболе второй степени (рисунок 3.18).

Ввиду сложности турбулентного течения и трудностей его аналитического исследования до настоящего времени для него нет достаточно строгой и точной теории. В большинстве случаев для практических расчетов, связанных с турбулентным течением жидкостей в трубах, пользуются экспериментальными данными, систематизированными на основе теории гидродинамического подобия. Важное значение при этом имеет движение жидкости непосредственно на стенке трубы. Здесь имеется тонкий подслой, в котором превалируют силы вязкости, а движение происходит без перемешивания (см. рисунок 3.19). Этот слой называется ламинарным (вязким). В его пределах скорость круто нарастает от нуля на стенке до некоторой конечной величины υл на границе слоя. Толщина δл ламинарного слоя крайне невелика, причем оказывается, что число Re, подсчитанное но толщине δл, скорости υл и кинематической вязкости ν, есть величина постоянная, т. е.

.

Эта величина в соответствии с теорией гидродинамического подобия имеет универсальное постоянное значение подобно тому, как постоянно Reкp для течения в трубах. Поэтому при увеличении скорости потока и, следовательно, Re растет также скорость υл а толщина δл ламинарного слоя уменьшается.

Подпись: &#13;&#10;Рисунок 3.19 -. Ламинарный пристенный слой при турбулентном течении в трубе&#13;&#10;Основной расчетной формулой для потерь напора при турбулентном течении в круглых трубах является уже приводившаяся выше эмпирическая формула, называемая формулой Вейсбаха— Дарси и имеющая следующий вид:

,                                                           (3.29)

где λт— коэффициент потерь на трение при турбулентном течении, или коэффициент Дарси.

Эта основная формула применима как при турбулентном, так и при ламинарном течении, различие заключается лишь в значениях коэффициента λ.

3.9.2 Определение коэффициента потерь на трение. Исследования И. Никурадзе

Для определения λ при турбулентном режиме предложен ряд эмпирических и полуэмпирических формул, полученных многими авторами в результате исследования различных областей гидравлического трения. Однако фундаментальным исследованием стала работа И. И. Никурадзе, который в 1933 г. опубликовал результаты своих многочисленных опытов, представленных в виде особого графика.

Подпись: &#13;&#10;Рисунок 3.20 – График Никурадзе&#13;&#10;В своих опытах Никурадзе исследовал напорное движение жидкости в круглоцилиндрических трубах, имеющих однозернистую равномерно распределенную (равнозернистую) шероховатость, которую он создавал путем наклеивания калиброванных песчинок высотой Δ на внутреннюю поверхность трубы.

Полученный Никурадзе график представляет собой семейство кривых, построенных в логарифмических координатах (по горизонтальной оси отложены величины lg ReD, а по вертикальной — lg 100λ) по точкам, соответствующим опытам с трубами с различной относительной шероховатостью Δr = Δ : D, от Δr = 0,00197 до Δr = 0,0666.

Рассмотрим подробно график Никурадзе (рисунок 3.20). Все поле графика можно условно разбить на пять областей.

Первая область — область ламинарного режима при Re  < 2300, (lg Re 3,36), здесь все опытные точки независимо от шероховатости уложились на одну прямую линию I, уравнение которой λ = 64 / Re.

Вторая область, расположенная между вертикалями III и IV, — область неустойчивого режима или переходная (числа Рейнольдса лежат в пределах от 2300 до 10000). Здесь возможно существование как ламинарного, так и турбулентного режимов, экспериментальные точки имеют значительный разброс.

Третья область — область гидравлически гладких труб» при турбулентном режиме, здесь толщина вязкого подслоя существенно больше высоты выступов шероховатости и турбулентное ядро потока не соприкасается с ними. Поэтому в этой области коэффициент λ = f (Re) не зависит от шероховатости. Область гладких труб представлена  на графике прямой линией II, уравнение которой

.                                                                (3.30)

Эта эмпирическая формула была получена Блазиусом в 1913г. в результате обработки многочисленных опытов по исследованию движения жидкости в круглых гладких латунных трубах при числах Рейнольдса Re от 2300 до 100000.

Четвертая область — область турбулентного режима доквадратичного сопротивления шероховатых труб, лежит между прямой II и линией АВ, образованной точками, отделяющими горизонтальные участки кривых с некоторой заданной точностью. Можно видеть, что в этой области каждая кривая отвечает определенному значению относительной шероховатости. Здесь турбулентное ядро постепенно раскрывает шероховатость, поэтому имеет место наиболее общий случай λ = f (Re, Δr).

Пятая область — область турбулентного режима квадратичного сопротивления шероховатых труб, располагается правее и выше линий АВ. Здесь коэффициент λ не зависит от числа Рейнольдса Re (все линии графика — прямые, параллельные горизонтальной оси). Коэффициент λ, а следовательно, и потеря напора hтр зависят от шероховатости λ = fr). Таким образом, как видно из формулы Вейсбаха - Дарси, для этой области сопротивления потеря напора по длине прямо пропорциональна квадрату средней скорости.

В заключение необходимо отметить, что общий качественный характер зависимостей коэффициента гидравлического трения λ, полученный Никурадзе для труб круглого сечения, распространяется и на другие потоки, в том числе и безнапорные, что было подтверждено опытами А. П. Зегжды, в которых исследовалось безнапорное движение жидкости в лотке прямоугольного сечения, имеющего различную равнозернистую шероховатость. Важно также подчеркнуть, что после указанных работ отпала необходимость создавать особые расчетные зависимости для различных жидкостей, так как род жидкости учитывается числом Рейнольдса.

3.9.3 Практические способы определения коэффициента гидравлического трения λ для напорных технических труб

Трубы, находящиеся в эксплуатации, подвергаются коррозии и покрываются различными отложениями, имеют разнозернистую шероховатость; выступы шероховатости различной формы и размеров, расстояние между ними неодинаковое (рисунок 3.20).

Опыты, проведенные рядом авторов с техническими трубами, показали, что характер зависимости коэффициента λ от числа Рейнольдса отличается от результатов, полученных Никурадзе, особенно в области доквадратичного сопротивления. Здесь в отличие от графика Никурадзе кривые Δr = const, опускаясь вниз, постепенно переходят от вида, соответствующего области гладкого сопротивления (где согласно формуле Блазиуса ), к виду, отвечающему области квадратичного сопротивления. Таким образом, в области доквадратичного сопротивления потеря напора по длине пропорциональна средней скорости υ в степени 1,75 < т < 2,0. Такой постепенный переход объясняют тем, что в случае разнозернистой шероховатости при увеличении числа Рейнольдса, а следовательно, уменьшении толщины вязкого подслоя δ выступы шероховатости вступают в соприкосновение с турбулентным потоков не все одновременно, а сначала наиболее высокие, затем средние и только при числах Re, соответствующих квадратичной области сопротивления, вязкий подслой «раскрывает» все выступы шероховатости.

Имея в виду разнозернистую шероховатость, в расчетные зависимости для технических труб вводят некоторую среднюю высоту выступов, именуемую эквивалентной шероховатостью, которую обозначим .

При турбулентном режиме для определения коэффициента λ в случае движения жидкости в напорных технических трубах используются или экспериментальные графики, или эмпирические и полуэмпирические формулы. Эти формулы обычно рекомендуются для одной из соответствующих областей сопротивления, приведенных в предыдущем параграфе. Следовательно, прежде чем обращаться к той или иной формуле, необходимо установить область сопротивления, граничными условиями существования которой являются так называемые нижнее    и верхнее  предельные числа Рейнольдса.

Согласно А. Д. Альтшулю эти числа могут быть определены по приближенным формулам:

, ,

где .

В случае 10000 < Re < , где Re — число Рейнольдса, соответствующее рассматриваемому потоку, получаем практически область гладких труб, для которой обычно рекомендуются либо формула Л. Прандтля

,                                          (3.31)

или более удобная формула Блазиуса

 ,

справедливая при числах Рейнольдса Re < 100000.

Область доквадратичного сопротивления отвечает числам Рейнольдса, лежащим в пределах

 < Re  < .

Для определения коэффициента λ в этой области сопротивления рекомендуется обобщенная формула Кольбрука, которую он предложил в 1938 г., основываясь на своих опытах с учетом исследований других авторов

,                                                           (3.32)

или более удобная для вычислений формула А. Д. Альтшуля

.                                                       (3.33)

В случае Re ≥  имеем квадратичную область сопротивления, для которой формула упрощается и приобретает вид формулы Л. Прандтля для шероховатых труб

,                                                              (3.34)

а формула А, Д. Альтшуля (87) приводится к формуле Шифринсона .

Величину средней высоты выступов шероховатости , которая входит в расчетные формулы, установить непосредственным измерением практически невозможно, так как на распределение скоростей по сечению и касательные напряжения влияет не только высота выступов, но их форма, а также их шаг расположения на стенке. Поэтому значение для данной трубы находят экспериментально следующим образом. Рассматривая квадратичную область сопротивления опытным путем, пользуясь формулой Вейсбаха-Дарси (3.29), определяют для данной трубы величину λ. Затем по формуле (88) вычисляют искомое значение . Найденную таким образом величину  называют эквивалентной шероховатостью, численные значения которой для разных труб приводятся в справочных таблицах.

3.10 Местные гидравлические сопротивления

Местными гидравлическими сопротивлениями называются участки трубопроводов (каналов), на которых поток жидкости претерпевает деформацию вследствие изменения размеров или формы сечения, либо направления движения. Простейшие местные со­противления можно условно разделить на расширения, сужения, которые могут плавными и внезапными, и повороты, которые также могут плавными и внезапными. Но большинство местных сопротивлений являются комбинациями указанных случаев, так как поворот потока может привести к изменению его сечения, а расширение (сужение) потока — к отклонению от прямолинейного движения жидкости (см. рисунок 3.21, б). Кроме того, различная гидравлическая арматура (краны, вентили, клапаны и т.д.) практически всегда является комбинацией простейших местных сопротивлений. К местным сопротивлениям также относят участки трубопроводов с разделением или слиянием потоков жидкости.

Необходимо иметь в виду, что местные гидравлические сопротивления оказывают существенное влияние на работу гидросистем с турбулентными потоками жидкости. В гидросистемах с ламинарными потоками в большинстве случаев эти потери напора малы по сравнению с потерями на трение в трубах. В данном разделе будут рассмотрены местные гидравлические сопротивления при турбулентном режиме течения.

Потери напора в местных гидравлических сопротивлениях называются местными потерями. Несмотря на многообразие местных сопротивлений, в большинстве из них потери напора обусловлены следующими причинами:

- искривлением линий тока;

- изменением величины скорости вследствие уменьшения или увеличения живых сечений;

- отрывом транзитных струй от поверхности, вихреобразованием.

Несмотря на многообразие местных сопротивлений, в большинстве из них изменение скоростей движения приводит к возникновению вихрей, которые для своего вращения используют энергию потока жидкости (см. рисунок 3.21, б). Таким образом, основной причиной гидравлических потерь напора в большинстве местных сопротивлений является вихреобразование. Практика показывает, что эти потери пропорциональны квадрату скорости жидкости, и для их определения используется формула Вейсбаха

.

При вычислении потерь напора по формуле Вейсбаха наибольшей трудностью является определение безразмерного коэффициента местного сопротивления . Из-за сложности процессов, происходящих в местных гидравлических сопротивлениях, теоретически найти  удается только в отдельных случаях, поэтому большинство значений этого коэффициента получено в результате экспериментальных исследований. Рассмотрим способы определения коэффициента  для наиболее распространенных местных сопротивлений при турбулентном режиме течения.

Для внезапного расширения потока (см. рисунок 3.21, б) имеется теоретически полученная формула Борда для коэффициента , который однозначно определяется соотношением площадей до расширения (S1) и после него (S2):

.                                                           (3.35)

Следует отметить частный случай, когда жидкость вытекает из трубы в бак, т. е. когда площадь сечения потока в трубе S1  значительно меньше таковой в баке S2. Тогда из формулы (3.35) следует, что для выхода трубы в бак = 1. Для оценки коэффициента потерь напора при внезапном сужении  используется эмпирическая формула, предложенная И.Е. Идельчиком, которая также учитывает соотношение площадей до расширения (S1) и после него (S2):

.                                                      (3.36)

Для внезапного сужения потока тоже необходимо отметить частный случай, когда жидкость вытекает из бака по трубе, т. е. когда площадь сечения потока в трубе S2 значительно меньше таковой в баке S1. Тогда из (3.36) следует, что для входа трубы в бак = 0,5.

Подпись: &#13;&#10;Рисунок 3.21 - Местные сопротивления:&#13;&#10;а — внезапное расширение; б — внезапное сужение; в — плавное расширение; г — плавное сужение;&#13;&#10;д — поворот трубы без закругления; е — поворот трубы с закруглением&#13;&#10;

В гидравлических системах достаточно часто встречаются плавное расширение потока (рисунок 3.21, в) и плавное сужение потока (рисунок 3.21, г). Расширяющееся русло в гидравлике принято называть диффузором, а сужающееся - конфузором. При этом, если конфузор выполнен с плавными переходами в сечениях 1'-1' и 2'-2', то его называют соплом. Эти местные гидравлические сопротивления могут иметь (особенно при малых углах α) достаточно большой длины l. Поэтому кроме потерь из-за вихреобразования, вызванного изменением геометрии потока, в этих местных сопротивлениях учитывают потери напора на трение по длине.

Значения коэффициентов для плавного расширения  и плавного сужения  находят с введением поправочных коэффициентов в формулы (3.35) и (3.36):  и .

Поправочные коэффициенты kp и kc имеют численные значения меньше единицы, зависят от углов α, а также от плавности переходов в сечениях и 1'-1' и 2'-2'. Их значения приводятся в справочниках.

Весьма распространенными местными сопротивлениями являются также повороты потоков. Они могут быть с внезапным поворотом трубы (рисунок 3.21, д) или с плавным поворотом (рисунок 3.21, е).

Внезапный поворот трубы (или колено) вызывает значительные вихреобразования и поэтому приводит к существенным потерям напора. Коэффициент сопротивления колена  определяется в первую очередь углом поворота δ и может быть выбран из справочника.

Плавный поворот трубы (или отвод) существенно снижает вихреобразование и, следовательно, потери напора. Коэффициент  для данного сопротивления зависит не только от угла поворота δ, но и от относительного радиуса поворота R/d . Для определения коэффициента  существуют различные эмпирические зависимости, например,

,                                              (3.37)

либо находятся в справочной литературе.

Коэффициенты потерь других местных сопротивлений, встречающихся в гидравлических системах, также могут быть определены по справочнику.

Следует иметь в виду, что два или более гидравлических сопротивления, установленных в одной трубе, могут оказывать взаимное влияние, если расстояние между ними менее 40d (d - диаметр трубы).

3.11 Местные сопротивления при больших и малых числах Рейнольдса.

Метод эквивалентной длины

Ранее были рассмотрены местные гидравлические сопротивления, потери напора в которых пропорцио­нальны квадрату скорости или расхода. Однако квадратичный характер зависимости потерь - наиболее распространенный, но все же частный случай для местного сопротивления.

Подпись: &#13;&#10;Рисунок 3.22 - Схема жиклера&#13;&#10;В машиностроительных гидросистемах встречаются местные сопро­тивления, внутри которых имеет место ламинарное течение. Поте­ри напора в таких сопротивлениях

пропорциональны скорости (или расходу) в первой степени, т.е. носят линейный характер. Кроме того, при ламинарном течении жидкости в трубах коэффициенты местных сопротивлений не всегда остаются постоянными. Указанные сопротивления встречаются существенно реже, чем сопротивления с квадратичной зависимостью потерь, и не имеют определяющего значения, но при расчете отдельных гидросистем их необходимо учитывать.

В качестве примера рассмотрим жиклер (рисунок 3.21), в канале которого существует ламинарное течение. Потери напора в жиклере будут складываться из потерь на трение в канале и потерь на внезапное расширение потока при выходе из этого канала. Причем первый вид из указанных потерь будет пропорционален скорости в первой степени (так как в канале ламинарное течение), а второй - квадрату скорости (потери на вихреобразование).

Если принимать во внимание оба вида потерь, то формула для коэффициента сопротивления жиклера будет иметь вид

.                                                    (3.38)

Это общее выражение для коэффициента любого местного сопротивления. Первое слагаемое в (3.38) учитывает линейные потери, а второе - квадратичные. Соотношение между первым и вторым слагаемыми зависит от геометрических размеров каждого конкретного сопротивления.

Использование зависимости (3.38) приводит к значительному усложнению при расчетах гидравлических систем. Однако практика показывает, что в подавляющем большинстве местных сопротивлений один из видов потерь существенно превышает второй, поэтому при проведении реальных расчетов одним из слагаемых формулы (3.38) пренебрегают.

Вместе с этой лекцией читают "Оглавление".

На практике для местных сопротивлений с линейным законом сопротивления (или с законом, близким к линейному) часто применяют метод эквивалентной длины. Сущность этого метода заключается в том, что для местного сопротивления задаются эквивалентная длина и условный диаметр (или условная площадь сечения). Причем их значения выбираются такими, что потери напора в условном трубопроводе равны потерям в данном гидравлическом сопротивлении. Тогда потери в трубопроводе с таким местным сопротивлением можно рассчитать по обобщенной формуле Пуазейля

,

где lp = l +lэкв – расчетная длина трубопровода;

      l – фактическая длина;

      l’экв – эквивалентная длина.

К таким сопротивлениям относятся большинство фильтров, а также линейные дроссели и некоторые жиклеры.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5161
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее