Популярные услуги

Задача по гидравлике/МЖГ
Повышение уникальности твоей работе
Любой реферат по механике жидкости и газа
Решение задач по гидравлике
КМ-4. Основы газодинамики. Расчётное задание - Выполню за вас!
Полный курс Итоговый тест - сдам за вас на отлично!
КМ-3. Гидростатика. Давление на твердую стенку. Расчётное задание - Выполню за вас!
КМ-3. Гидростатика. Давление на твердую стенку. Расчётное задание - Выполню за вас!
КМ-2. Гидростатика. Основная формула гидростатики. Расчётное задание - Выполню за вас!
Главная » Лекции » Гидравлика и пневматика » Гидравлика и теплотехника » - Дорожные водопропускные сооружения

- Дорожные водопропускные сооружения

2021-03-09СтудИзба

12. ДОРОЖНЫЕ ВОДОПРОПУСКНЫЕ СООРУЖЕНИЯ

Дорожные водопропускные сооружения и их классификация

Рельеф земной поверхности характерен неровностя­ми, чередованием повышенных и пониженных участков. Как показы­вает статистика, в среднем на каждый километр трассы дорог приходится примерно одно понижение. Чтобы обеспечить сток воды от выпадающих осадков в местах пересечения дорогами пониженных участков рельефа, должны быть предусмотрены водопропускные сооружения. Для пропуска стока периодических и постоянных водотоков с ма­лых водосборных бассейнов устраивают малые водопропускные соору­жения.

Малые водопропускные сооружения встре­чаются на дорогах наиболее часто. Их доля доходит до 80 - 90% от общего числа водопропускных сооружений, а в це­лом по стране их количество достигает величины порядка миллиона.

По конструкции малые водопропускные соору­жения (рис. 12.1) отличаются разнообразием: это малые мос­ты (а); безнапорные дорожные водопропускные трубы (б); работающие как водослив с широким порогом; напорные (в) и полунапорные (г) трубы, работающие как насадки и ко­роткие трубы или отверстия в тонкой стенке. Это могут быть и дюкеры под насыпью дороги.

Рис. 12.1

Основной целью гидравлических расчетов малых водо­пропускных сооружений на дорогах является определение их отверстия; напора перед ним, т.е. отметки подпертого уровня; глубины и скорости потока на выходе при опреде­лении вида крепления в отводящем русле для предотвраще­ния подмыва конструкций.

Отверстием водопропускного сооружения назы­вается его наибольший горизонтальный размер в свету в плоскости, перпендикулярной направлению движения по­тока. Так, для круглых труб отверстие равно их внутрен­нему диаметру d; для многоочковых - сумме внутренних диаметров всех труб; для труб прямоугольного сечения отверстие равно расстоянию между внутренними гранями боковых стенок, для однопролетного моста - ширине по­тока по свободной поверхности В в расчетном сечении подмостового русла.

Рекомендуемые материалы

Обычно отверстия малых водопропускных сооружений меньше ширины водотока, т. е. они стесняют поток воды. Из-за стеснения потока уровень воды в верхнем бьефе повышает­ся. Этот уровень называют подпертым. Глубина по­тока за сооружением, как правило, равна нормальной hо, определяемой по формуле Шези с учетом расчетного расхода, формы сечения, коэффициента шероховатости и продоль­ного уклона дна лога. Эта глубина никак не связана с типом искусственного сооружения, а определяется бытовым (естественным) состоянием водотока, поэтому ее и назы­вают бытовой  глубиной hб.

Как уже было отмечено выше, подавляющее большин­ство малых водопропускных сооружений на дорогах со­ставляют безнапорные трубы и малые мосты, т. е. соору­жения, работающие по принципу водослива с широким порогом. Движение воды через такие водопропускные со­оружения имеет целый ряд особенностей, которые должны учитываться надлежащим образом при разработке метода их гидравлического расчета. В частности, соотношение напора и длины безнапорной дорожной трубы часто достигает зна­чений 15 - 30. Это значительно превышает соответствующее соотношение даже для широкого водослива, где оно равно 11 - 12. Следовательно, при движении потока в дорожной трубе заметное влияние могут оказывать силы трения.

Конструкции водопропускных труб.

Конструкции водопропускных труб отличаются большим разнообразием.

Трубы состоят из оголовков, звеньев и фундаментов.

По форме отверстия различают трубы прямоугольные, круглые, овоидальные, прямоугольные с полуциркульным сводом и др.

Входная часть дорожной трубы называется входным оголов­ком. На рис. 11.2 изображены применяющиеся оголовки: портальный (а), коридорный (б), раструбный с обратными стенками (в), раструбный с коническим звеном трубы (г), а также безоголовочный вход (д) и овоидальная труба с во­ротниковым оголовком (<?). Наибольшее распространение получили портальные и раструбные оголовки.

В прямоугольных трубах отверстием 1,0...2,5м применяют раструбные оголовки с повышенным входным звеном. Его высота на 0,5 м больше высоты нормального звена. Применяют трубы и без оголовков.

Малые водопропускные сооружения изготавливают из металла, бетона, железобетона, камня и дерева. Применяют мосты – балочные, арочные, эстакадные и др. Существуют типовые проекты труб и мостов. На железных дорогах в основном применяют сборные трубы: круглые железобетонные диаметром 1,0...2,0м; прямоугольные бетонные отверстием 1,5...6,0м; круглые металлические гофрированные диаметром 1,3...3м.

Конструкции труб и мостов изучают в курсе «Проектирование мостов и труб». Размещение и выбор типа малых водопропускных сооружений на железных дорогах, проверку высоты насыпи и обеспечение условий нормальной эксплуатации сооружений и другие прикладные вопросы проектирования водопропускных сооружений изучают в курсе «Изыскания и проектирование железных дорог».

Рис. 12.2

Гидравлическая классификация дорожных водопропускных труб и форм движения воды в них.

В зависимости от уклона дна трубы (ее лотковой части) различают трубы: с нулевым уклоном (J0 = 0); с прямым малым уклоном (J0 < Jк); с уклоном равным критическому (J0 = Jк); с прямым большим уклоном (J0 > Jк).

Критический уклон вычисляют по формулам

 В зависимости от наличия свободной поверхности в дорожных трубах различают движение воды в трубах: безнапорное (рис. 11.1, б); полунапорное (рис. 11.1, г); напорное (рис. 16.1, в).

При безнапорном движении (безнапорные трубы) поток на всей длине трубы имеет свободную поверхность, входное сечение трубы не затоплено. Это бывает при Н/hТ ≤ 1,2, где Н – статический напор; hТ – высота трубы (или диаметр трубы d).

При полунапорном движении входное сечение трубы заполнено водой (поток соприкасается с периметром отверстия по всей его длине) и на всей длине трубы поток имеет свободную поверхность. Это соблюдается, если 1,2 ≥ Н/hТ ≥ 1,4 (полунапорная труба). Такая форма движения воды аналогична истечению жидкости из-под затвора.

При напорном движении жидкости в трубе ее сечение заполнено водой на всем протяжении трубы или на большей ее части, что наблюдается при Н/hТ > 1,4. Приведенные критерии гидравлических условий работы труб приближенные. Они зависят от формы оголовков труб.

В подмостовых руслах поток всегда безнапорный. В зависимости от соотношения между местными гидравлическими сопротивлениями и сопротивлениями по длине потока в трубе различают короткие и длинные трубы. Короткой называют трубу, длина которой не оказывает существенного влияния на ее пропускную способность, определяющуюся главным образом условиями входа воды в трубу – местными сопротивлениями. Длинной называют трубу, в которой гидравлические сопротивления обусловлены главным образом потерями энергии по ее длине, но местные гидравлические сопротивления также учтены. В зависимости от влияния уровня воды в нижнем бьефе (для безнапорных труб) различают неподтопленные трубы, когда уровень нижнего бьефа не влияет на ее пропускную способность, и подтопленные, когда уровень нижнего бьефа влияет на пропускную способность трубы и напор перед ней. Эти же формулировки относятся и к потокам в подмостовых руслах.

Формы свободной поверхности в трубах.

Формы свободной поверхности в трубах отличаются большим разнообразием.

Предположим, что безнапорная труба имеет малый уклон (см. рис. 11.1, б). В этом случае свободную поверхность потока в трубе или под мостом можно разделить на три участка. Первый – входной. С гидравлической точки зрения он начинается в сечении перед трубой или мостом, в котором наблюдается статический напор Н, и заканчивается в сечении со сжатой глубиной hс. Однако по практическим соображениям за начальное сечение входного участка принимают сечение, проходящее через нижнюю точку трубы, а чаще через верхнюю точку трубы. Последнее сечение предпочтительно, так как, зная в нем площадь живого сечения, легко подсчитать скорость потока при входе в трубу. Обозначим длину входного участка lвх и глубину hвх. На среднем участке (втором) длиной l0 имеем кривую подпора при возрастании глубины от hc до h. В случае неподтопленной трубы или моста со стороны нижнего бьефа глубина h несколько меньше критической глубины hк, но принимается равной ей. На третьем участке, называемом выходным или сливным, глубина изменяется от hк до hнб. По практическим соображениям выходное сечение трубы совмещают с верхней кромкой трубы. Следовательно, l = lвх + l0 + lвых.

Пусть полунапорная труба имеет малый уклон (см. рис. 16.1, г). Ниже входного сечения образуется сжатая глубина hc, далее – кривая подпора, а затем кривая спада. Движение воды в полунапорных трубах аналогично истечению жидкости через отверстия в тонкой стенке.

Движение воды в напорных дорожных трубах аналогично истечению через насадки. В начале трубы (см. рис. 11.1, в) наблюдается явление сжатия потока (в данном случае несимметричное), благодаря чему образуется вакуум. Если применяются хорошо обтекаемые входные оголовки, то вакуум в дорожной напорной трубе не образуется. Вода из трубы может выходить без подтопления со стороны нижнего бьефа – истечение происходит в атмосферу с образованием кривой свободной поверхности в конце трубы. Если hнб > d, то истечение происходит под уровень нижнего бьефа.

Преимущество дорожных труб состоит в том, что они не нарушают целостности земляного полотна. Предпочтение отдается безнапорным трубам. Преимущество малых мостов в том, что их применяют при малых высотах насыпей.

Гидравлический расчет водопропускных труб и малых мостов

Гидравлический расчет отверстий безнапорных дорожных труб и малых мостов основан на аналогии с расчетом движения воды через водослив с широким порогом, а полунапорных – на аналогии с истечением жидкости из-под затвора.

Применение теории водослива с широким порогом к расчету безнапорных прямоугольных труб и малых мостов.

С гидравлической точки зрения нет принципиальной разницы между течением жидкости в прямоугольной трубе и в укрепленном прямоугольном подмостовом русле. Над неподтопленным водосливом имеем течение жидкости с двумя перепадами. Такая же форма движения воды наблюдается и при неподтопленном движении в трубах и под мостами (см. рис. 11.1). Разница в том, что высота порога в трубах и под мостами равна нулю или же очень мала. При наличии порога поток при входе на водослив испытывает вертикальное и боковое сжатие, а при входе в трубу и подмостовое русло – в основном боковое сжатие, но формы свободной поверхности воды аналогичны. Дно трубы или подмостовое русло (см. рис. 11.1) имеет некоторое возвышение по отношению к дну потока в верхнем бьефе. Нельзя смешивать разные понятия – напор и глубину перед сооружением.

Условия неподтопления и подтопления для труб и мостов формируются так же, как и для водосливов с широким порогом. Если отметка дна трубы или отметка подмостового русла совпадает с отметкой дна в нижнем бьефе (см. рис. 11.1), то Нн = hнб. Следовательно, труба (мост) работает без подтопления, если hнб0 < 0,8 или hнб/hк ≤ 1,25, и с подтоплением, если hнб / Н0 > 0,8 или hнб / hк > 1,25.

Безнапорные трубы.

Расход воды, протекающей через прямоугольную короткую безнапорную неподтопленную трубу (мост), выражается формулой

 Расход воды известен. В уравнение входят два неизвестных – напор Н и ширина отверстия b. Задаваясь Н или b, соответственно получим уравнения:

(11.1)

где H0 – полный напор;

 (11.2)

где  m – коэффициент расхода трубы (моста).

Прямоугольную трубу считают короткой, если ее длина l при J0 ≈ 0 отвечает условию lт ≤ lпр, где

(11.3)

Коэффициент расхода m зависит от условий входа воды в трубу и ее формы поперечного сечения. Для прямоугольных труб без оголовков m = 0,31. С оголовками: портальным с конусами m = 0,325; коридорным m = 0,34; раструбным m =  0,36.

Значение b, полученное по формуле (11.1), необходимо округлить до ближайшего большего значения в соответствии с типовыми проектами.

При принятом значении b подсчитывают статический напор Н. Расчет ведется способом последовательных приближений, так как средняя скорость потока υ0 в верхнем бьефе зависит от Н. В ходе расчетов необходимо проверять соблюдение условия неподтопления водослива.

Согласно СНиП 2.05.03-84 отверстие (и высоту в свету) труб следует назначать, как правило, не менее 1,0 м при длине трубы (или расстоянии между смотровыми колодцами в междупутье на станциях) до 20 м.

Трубы относятся к длинным, если lТ > lпр в соответствии с формулой (11.3). Увеличение длины трубы способствует повышению напора перед ней. Статический напор для длинной трубы Ндл можно приближенно подсчитать по формуле

где Н – статический напор перед такой же короткой трубой.

Из формулы видно, что при lТ/hТ = 20; Ндл = Н. Следовательно, длинной трубой ориентировочно можно считать трубу с lТ > 20hТ.

При принятой ширине отверстия трубы (моста) статический напор Н можно определить по глубине воды в трубе (подмостовом русле), считая, что она равна критической глубине hк. Запишем уравнение Д.Бернулли для сечений перед трубой (мостом) и в трубе

,

где υк – средняя скорость потока при глубине hк.

Учитывая, что и последнее уравнение запишем в виде

Критическую глубину подсчитывают по формуле (8.15)

Подмостовые русла могут быть укреплены различными способами, поэтому гидравлический расчет мостов с укрепленными руслами может быть выполнен по допускаемой неразмывающей скорости υнр. Запишем уравнение, принимая Вк = bк для неподтопленного моста

Так как ωк = Q / υк, последнюю формулу перепишем в виде

Принимая υк = υнр и вводя в формулу коэффициент бокового сжатия потока ε < 1, получим (строительная ширина отверстия)

 (13.4)

В первом приближении можно принять εα ≈ 1,0, так как коэффициент Кориолиса α > 1,0.

Воспользовавшись уравнением для расхода воды в трубах и подмостовых руслах с подтоплением со стороны нижнего бьефа, из него можно найти ширину отверстия (при φ ≈ φп):

 (13.5)

Глубина h равна разности отметок поверхности воды и отметки дна трубы (подмостового русла) при J0 ≈ 0. Зная h, находим  . Коэффициент ε ≈ 0,8... 0,9.

Статический напор перед трубой (мостом)

Согласно СНиП 2.05.03-84 водопропускные трубы следует, как правило, проектировать с безнапорным в них движением воды. Допускается предусматривать полунапорное и напорное движение воды в трубах, сооружаемых на железных дорогах общей сети для пропуска только наибольшего расхода, на всех остальных дорогах – расчетного расхода воды.

Полунапорные трубы.

Формулу для расхода воды в этом случае (см. рис. 11.1, г) получим, записывая уравнение Д. Бернулли для сечения перед трубой и для сжатого сечения в трубе с глубиной hс. В результате получим

Бесплатная лекция: "3 - Физиология зрения" также доступна.

 (11.6)

Введя коэффициент вертикального сжатия потока (в трубе) ε, получим: hc = εhT и φε = µ коэффициент расхода. В соответствии с опытными данными значения ε и µ, принимают соответственно: труба прямоугольная без оголовков – 0,86; 0,63; портальный оголовок с конусами – 0,74; 0,62; коридорный – 0,83; 0,61; раструбный – 0,78; 0,64.

Для неподтопленных безнапорных круглых труб, а также труб других поперечных сечений можно применять формулу

 (11.7)

где средняя ширина потока в сечении с критической глубиной.

Формула (16.6) может быть использована и для расчета отверстий малых мостов с трапецеидальной формой живого сечения.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее