Популярные услуги

Любая задача по линалу
Любая задача по математическому анализу и по интегралам и дифференциальным уравнениям
КМ-3 Важнейшие аспекты теории графов - любой вариант за 3 суток!
Решу любую задачу
Любая задача по Линейной алгебре и аналитической геометрии
НОМОТЕХ
Предельные теоремы и математическая статистика
Повышение уникальности твоей работе
Контрольная работа по рядам (КМ-3) ИДДО 2022
Сдам любой тест по дискретке в течение суток на положительную оценку!
Главная » Лекции » Математика » Линейная алгебра » Элементы теории матриц

Элементы теории матриц

2021-03-09СтудИзба

§3. Элементы теории матриц

В предыдущем разделе было введено определение матрицы A размерности p ´ q как прямоугольной таблицы:

                                 .

Можно пользоваться сокращенной формой записи:

                       A = (aij); i = 1, 2, 3, ¼, p; j = 1, 2, 3, ¼, q.

Две матрицы одинаковой размерности p ´ q называются равными, если в них одинаковые места заняты  равными числами  (на пересечении i-й строки и

j-го столбца в одной и в другой матрице стоит одно и то же число; i=1, 2, ..., p; j=1, 2, ..., q).

Пусть A = (aij) – некоторая матрица и a – произвольное число, тогда aA = (aaij), то есть при умножении матрицы A на число a все числа, составляющие матрицу A, умножаются на число a.

Пусть A и B – матрицы одинаковой размерности A = (aij), B = (bij), тогда их сумма A + B – матрица C = (cij) той же размерности, опреде­ляемая из формулы cij = aij + bij, то есть при сложении двух матриц попарно складываются одинаково расположенные в них числа.

Матрицу A можно умножить на матрицу B, то есть найти матрицу C = AB, если число столбцов n матрицы A равно числу строк матрицы B, при этом матрица C будет иметь столько строк, сколько строк у матрицы A и столько столбцов, сколько столбцов у матрицы B. Каждый элемент матрицы C определяется формулой

Рекомендуемые материалы

                                              .                                                   

Элемент  cij  матрицы-произведения C  равен сумме произведений элементов i-

строки  первой  матрицы- сомножителя  на  соответствующие  элементы  j-го

столбца второй матрицы-сомножителя.

Из сказанного следует, что если можно найти произведение матриц AB, то произведение BA, вообще говоря, не определено.

Приведем примеры перемножения матриц:

                      1) =

==

= ;

         2)  = (8, 4).

Если AB и BA одновременно определены, то, вообще говоря, эти произведения не равны. Это означает, что умножение матриц не коммутативно. Продемонстрируем это на примере.

              .

Для алгебраических действий над матрицами справедливы следующие законы:

1) A + B = B + A;

2) a (A + B) = aA + aB;

3) (A + B) + C = A + (B + C);

4) (AB)C = A(BC);

5) A(B + C) = AB + AC.

Матрица, состоящая из одной строки, называется вектором (вектором-строкой). Матрица, состоящая из одного столбца, также называется вектором (вектором-столбцом).

Пусть имеется матрица A = (aij) размерности m ´ n, n-мерный вектор-столбец X и m-мерный вектор-столбец B:

                                           .

Тогда матричное равенство

                                                  AX = B,                                                     (1)

если расписать его поэлементно, примет вид:

                                .

Таким образом, формула (1) является записью системы m линейных уравнений с n неизвестными в матричной форме. Ниже будет показано, что, записывая систему в сжатом виде, кроме краткости написания мы получаем и другие очень важные преимущества.

Пусть имеются две квадратные матрицы одинаковой размерности:

                                .

Требуется найти матрицу X, удовлетворяющую матричному уравнению

                                         AX = D.

Из правила умножения матриц следует, что матрица X должна быть квадратной матрицей той же размерности, что и матрицы A и D:

                                          .

Из правила умножения матриц и из определения равенства матриц следует, что последнее матричное уравнение распадается на три системы линейных уравнений:

                                      ;

                                      ;                                       (2)

                                      .

Все три системы (2) имеют одинаковые матрицы коэффициентов, что дает возможность решать их одновременно, введя матрицу

                                   .

Здесь первые четыре столбца образуют расширенную матрицу первой системы, первые три столбца вместе с пятым столбцом образуют расширенную матрицу второй системы, а первые три столбца вместе с шестым – расширенную матрицу третьей системы.

Применим для решения метод Жордана-Гаусса который является модификацией метода Гаусса.

Первый шаг преобразования матрицы по методу Жордана-Гаусса совпадает с первым шагом преобразований по методу Гаусса. Оставляем без изменений первую строку матрицы, а во второй и третьей “организуем” нули в первом столбце:

                                    .

Теперь, следуя методу Жордана-Гаусса, оставляем без изменения лишь вторую строку (так как a22 ¹ 0) и получаем с помощью второй строки в первой и третьей строках во втором столбце нули. Для этого вместо первой строки пишем сумму первой строки, умноженной на 5, и второй строки, умноженной на –2. Вместо третьей строки пишем сумму третьей строки , умноженной на 5, и второй строки, умноженной на –1 После деления полученной третьей строки на 2 получаем матрицу

                                    .

Чтобы в первой и второй строках в третьем столбце получить нули, про­ведем следующие преобразования последней матрицы. Оставив третью строку без изменений, заменим вторую строку разностью второй строки и утроенной третьей, а первую – суммой первой и третьей строк. После деления первой и второй строк преобразованной матрицы на 5 получится матрица

                                    .                                     (3)

При преобразовании системы по методу Жордана-Гаусса матрица коэффициентов приводится (если это возможно) к такому виду, что на главной диагонали стоят единицы, а над главной диагональю и под главной диагональю – нули.

Если взять первые четыре столбца матрицы (3), то получится матрица, в которую преобразовалась расширенная матрица первой из систем уравнений (2). Из нее следует: x11=2; x21=–5; x31=10. Матрица, образованная первыми тремя столбцами вместе с пятым столбцом матрицы (3), дает решение второй системы уравнений (2): x12=2; x22=1; x32=–3. И, наконец, матрица, образованная первыми тремя столбцами вместе шестым столбцом матрицы (3), дает решение третьей системы уравнений (2): x13=3; x23=–4; x33=12.

Из сказанного можно сделать очень интересный и важный вывод: последние три столбца матрицы (3) образуют искомую матрицу X.

                                          .

Введем ряд новых определений.

Нулевой матрицей называется матрица, у которой все элементы – нули. Очевидно равенство A + (–1)A = 0. Здесь в правой части через 0 обозначена нулевая матрица той же размерности, что и матрица A.

Квадратная матрица размера n называется единичной, если все её элементы, стоящие на главной диагонали, равны единице, а все остальные – нули. Единичную матрицу можно определить формулами:

                                          aij = 1 при i = j;

                                          aij = 0 при i ¹ j.

Очевидно, что первые три столбца матрицы (3) образуют единичную матрицу.

Единичная матрица, как правило, обозначается буквой E:

                                      .

Легко проверить справедливость равенств: EA = AE = A. Здесь A – квадратная матрица, и размеры A и E одинаковы.

Пусть A – квадратная матрица. Обратной матрицей к матрице A называется такая матрица A–1, для которой справедливы равенства:

                                  AA–1 = A–1A = E.

Очевидно, что A–1 – квадратная матрица того же размера, что и матрица A. Сразу заметим, что не всякая квадратная матрица имеет обратную матрицу.

Поставим задачу: найти обратную матрицу к матрице

                                             .

Условие

,

где

,

сводится к трём системам уравнений, которые будем решать одновременно, используя метод Жордана-Гаусса. Матрица, представляющая расширенные матрицы всех трёх систем, примет вид

                                        .

Подвергая её преобразованиям по методу Жордана-Гаусса, последовательно будем получать:

             ÞÞ

           ÞÞ             (4)

Как и в предыдущем примере, можно сказать, что три последних столбца образуют искомую матрицу, то есть

Информация в лекции "22.1 Предпосылки перестройки" поможет Вам.

                                       .

Теперь сформулируем правило, по которому находится матрица, обратная к квадратной матрице А размера n.

Нужно выписать матрицу размерности n ´ 2n, первые n столбцов которой образованы матрицей А, а последние n столбцов образуют единичную матрицу Е. Построенная таким образом матрица преобразуется по методу Жордана-Гаусса так, чтобы на месте матрицы А получилась единичная матрица, если это возможно. Тогда на месте матрицы Е получается матрица А–1.

Если матрицу А нельзя методом Жордана-Гаусса преобразовать к единичной матрице, то А–1 не существует. Так матрица

                                                

не имеет обратной. Читатель может в этом убедиться самостоятельно.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее