Популярные услуги

Определители

2021-03-09СтудИзба

§4. Определители

Рассмотрим систему двух линейных уравнений с двумя неизвестными в общем виде:

                                          .

Найдем x1 следующим образом: чтобы исключить x2, умножим первое уравнение на a22 и из полученного уравнения вычтем второе, умноженное на a12:

                               .                                 (1)

Обозначим D = a11a22a12a21, D1 = b1a22b2a12.

Для определения x2 поступим так: умножим второе уравнение на a11 и из полученного уравнения вычтем первое, умноженное на a21:

                                 (a11a22a12a21)x2 = a11b2a21b1.                                  (2)

Обозначим D2 = a11b2a21b1.

Рекомендуемые материалы

Операционное исчисление 1-4 номера
Для изготовления двух видов соков используются слива, черника и клубника. Общее количество сливы – 300 кг, черники -270 кг, клубники - 400 кг. На сок 1 вида расход продукта в частях составляет соответственно 2:1:4, на сок 2 вида – соответственно, 3:3
На четыре базы A1, A2, A3, A4 поступил однородный груз в количествах, соответственно равных 23, 32, 22 и 30 единиц. Этот груз требуется перевезти в три пункта назначения B1, B2, B3, соответственно, в количествах 33, 27 и 47 единиц. Тарифы перевозок е
Даны координаты вершин треугольника АВС. А(-1,2),В(-3,0),С(-6,4) Найти: косинус угла ВАС; уравнение прямой L1 проходящей через точки А и С; уравнение высоты L2 опущенной из вершины В на сторону АС; координаты точки D пересечения прямых L1 и
Даны координаты точек А(2,1,4),В(3,5,-2),С(-7,-3,2), D(-3,1,8) Найти: площадь грани АВС; объем пирамиды АВСD; уравнение плоскости Р1, содержащей грань АВС; уравнение прямой L, проходящей через точку D перпендикулярно грани АВС;
Привести к каноническому виду уравнения линий 2-го порядка. Определить тип линии, основные ее параметры, сделать чертеж. а) 16x2-4y2-32x+24y-84=0; б) y2-4x+2y+1=0

Из (1) и (2) видно, что если D ¹ 0, то система имеет единственное решение[1], определяемое формулой

                                           .                                            (3)

Величина D называется определителем матрицы второго порядка

.

Вообще определителем произвольной матрицы второго порядка называется число, которое обозначается  и равно произ­

ведению двух чисел, стоящих на главной диагонали минус произведение двух чисел, стоящих на другой диагонали: a11a22a12a21.

Например,

                                      .

Из сказанного следует, что величины D1 и D2 в (3) тоже являются определителями:

                                    .

Рассмотрим теперь систему трех линейных уравнений с тремя неизвестными:

                                    .                                      (4)

Введем определение. Определителем произвольной квадратной матрицы третьего порядка  называется сумма шести слагаемых, каждое из которых представляет собой произведение трех элементов матрицы, выбираемых по следующему правилу: три произведения элементов, стоящих на главной диагонали и в вершинах двух треугольников: , берутся со знаком "+", а три произведения элементов, стоящих на второй диагонали и в вершинах двух других треугольников: , берутся со знаком "-". Определитель третьего порядка обозначается так:

.

Например,

        

                             

Решая систему (4), например методом Гаусса, можно получить равенства

                                  D×x1 = D1; D×x2 = D2; D×x3 = D3,                                   (5)

где

                           

                           .

Из формул (5) видно, что если D ¹ 0, то единственным образом определяется решение системы:

                                             .

Решая квадратные системы линейных уравнений 4-го, 5-го или любого более высокого порядка, можно получить формулы, аналогичные формулам (1), (2) или (5).

Дадим определение определителя

квадратной матрицы n-го порядка или просто определителя n-го порядка. (В дальнейшем, принимая во внимание введённое обозначение, под элементами, строками и столбцами определителя матрицы будем подразумевать элементы, строки и столбцы этой матрицы.)

Сформулируем понятие n! (читается эн факториал): если n – натуральное (целое положительное) число, то n! – это произведение всех натуральных чисел от 1 до n.

                                        n! = 1×2×3×¼×(n 1) n.

Например,

                                         5! = 1×2×3×4×5 = 120.

Замечание: в некоторых книгах вместо термина "определитель" используется термин "детерминант" и определитель матрицы A обозначается detA.

Определителем n-го порядка называется сумма n! слагаемых. Каждое слагаемое представляет собой произведение n элементов, взятых по одному из каждой строки и каждого столбца определителя[2] . (Произведения отличаются одно от другого набором элементов.) Перед каждым произведением ставится

знак "+" или "-". Покажем, как  определить, какой нужно ставить знак перед

произведением.

Так как в каждом произведении присутствует один элемент из 1-й строки, один элемент из 2-ой и т.д., то произведение в общем виде можно записать так:

                                             a1i×a2j×a3k×¼×ans.

Здесь  i, j, k, ¼, s – номера столбцов, в которых стоят элементы, выбранные из 1-й, 2-й, 3-й, ... n-й строк, соответственно. Ясно из сказанного выше, что каждое из чисел i, j, k, ¼, s равно какому-либо из чисел 1, 2, ..., n, и что все числа i, j, k, ¼, s – различные.

Расположенные в данном порядке

                                                 i, j, k, ¼, s,

эти числа образуют "перестановку" из чисел 1, 2, ..., n (перестановкой называется заданный порядок в конечном множестве).

Взаимное расположение двух чисел в перестановке, когда большее стоит впереди меньшего называется инверсией. Например, в перестановке  три инверсии; в перестановке  – шесть инверсий.

Перестановка называется четной, если в ней четное число инверсий и нечетной, если число инверсий нечетное.

Теперь можно сформулировать правило: произведение a1i×a2j×a3k×¼×ans берется со знаком "+", если вторые индексы образуют четную перестановку, и со знаком "-", если нечетную.

Из определения определителя можно вывести следующие его свойства.

1. Если поменять местами две строки определителя (два столбца), то получим новый определитель, равный исходному, умноженному на .

2. Определитель, имеющий две равных строки (два равных столбца), равен нулю.

3. Если одну из строк определителя умножить на какое-либо число, то получится определитель, равный исходному, умноженному на это число.

4. Определитель транспонированной[3] матрицы равен определителю исходной матрицы.

5. Если в определителе вместо любой строки записать сумму этой строки и любой другой строки, умноженной на некоторое число, то полученный новый определитель будет равен исходному.

До сих пор было показано, как вычислять определитель второго и третьего порядков. Чтобы вычислить определитель более высоких порядков, пользуются формулой Лапласа разложения определителя по строке или столбцу:

              detA = ai1(–1)i+1M i1 + ai2(–1)i+2M i2 +¼+ ain(–1)i+nM in =

                                = a1j (–1) 1+jM 1j + a2j(–1)2+jM 2j +¼+ anj(–1) n+jM nj

Здесь i и j — любые числа от 1 до n. Последняя формула представляет собой разложение определителя по i-й строке или j-му столбцу. Mij называется минором и равняется определителю порядка n – 1, который получается из определителя detA, если вычеркнуть i-ю строку и j-й столбец. Произведение
(–1)i+jMij обозначается Aij и называется алгебраическим дополнением элемента aij.

Пусть D – определитель четвертого порядка: . Представим его разложение по второй строке:

,

и по второму столбцу:

                  

.

Аналогичным образом можно вычислить D, разлагая его по первой, третьей, четвертой строке или по первому, второму или четвертому столбцу.

Вычисление определителя четвертого порядка сводится в худшем случае (если среди элементов нет нулей) к вычислению четырех определителей третьего порядка.

Аналогичным образом вычисление определителя 5-го порядка сводится к вычислению 5-ти определителей 4-го порядка и т.д.

Для того, чтобы получить представление о том, что такое определитель n-го порядка, не прибегая к определению на предыдущей странице, можно поступить так: выучить, как вычисляются определители 2-го и 3-го порядков и как по методу Лапласа сводить вычисление определителя n-го порядка к вычислению определителя n – 1-го порядка. Тогда становится понятным, как вычислять определитель 4-го порядка, затем 5-го порядка и т. д.

Из сказанного следует, что вычисление определителя 5-го порядка можно в общем случае свести к вычислению 20-ти(!) определителей 3-го порядка, что очень затрудняет задачу.

Вычисление определителя упрощается, если воспользоваться свойством 5. Пусть D – определитель четвертого порядка:

.

Этот определитель разложим по третьей строке, так как там есть нуль и, что особенно важно, –1. Задача заключается в таком преобразовании определителя D, чтобы получить нули на месте a31 и a33. К первому столбцу прибавим второй столбец, умноженный на –2, а к третьему столбцу прибавим второй столбец, умноженный на –3. Второй столбец, с помощью которого проводились преобразования, остается без изменений.

Таким образом вычисление определителя 4-го порядка сведено к вычислению только одного определителя 3-го порядка:

.

Пусть теперь D — определитель 5-го порядка:

.

Предположим, что мы решили разложить его по первому столбцу. Можно поступить следующим образом. Оставим первую строку без изменений. Вторую строку умножим на 3 и прибавим к ней первую, умноженную на –2. При этом обязательно за знак определителя выносится множитель  (см. свойство 3). Вместо третьей строки пишем сумму третьей и умноженной на  первой. Четвертую строку умножаем на 3 и прибавляем первую, умноженную на –4, опять вынося множитель  за знак определителя. Пятую строку умножаем на 3, прибавляем к ней первую, умноженную на –5 и опять выносим  за знак определителя. Теперь получим

.

Теперь вычисление определителя 5-го порядка сведено к вычислению только одного определителя 4-го порядка.

Рекомендация для Вас - 18 Причины принятия христианства.

Таким образом, пользуясь свойствами определителя и методом Лапласа, можно вычисление определителя n-го порядка свести к вычислению лишь одного определителя порядка n – 1.



[1] Если говорить строго, то из (1) и (2) следует, что если решение существует, то оно единственным образом выражается через коэффициенты системы и свободные члены. Чтобы доказать существование, надо подставить две формулы (3) в систему и убедиться в том, что оба уравнения обращаются в верные равенства.

[2] Попробуйте доказать сами, что таких произведений, отличающихся одно от другого набором элементов существует ровно n!

[3] i-я строка исходной матрицы A, имеющей m строк, является i-м столбцом транспонированной матрицы . Например,

.

Операцию транспонирования матрицы можно назвать поворотом на 180° вокруг главной диагонали.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее