Популярные услуги

Тройной интеграл

2021-03-09СтудИзба

Лекция 3 Тройной интеграл.

Задача о массе пространственного тела.

Пусть есть некоторое пространственное материальное тело, занимающее область V, в каждой точке которой задана объемная плотность f(x, y, z). Надо вычислить массу пространственного тела.

Эта задача приводит к понятию тройного интеграла.

Введем разбиение области V на элементарные области, не имеющие общих внутренних точек (условие А)  Dvk с малым объемом (обозначение области и ее объема обычно одно и то же, это принято уже более 200 лет и не вносит путаницы).

На каждом элементе разбиения – элементарной области отметим точку Mk(xk, yk, zk). Вычислим  плотность в этой точке f(xk, yk, zk) = f(Mk) и предположим, что плотность постоянна в элементарной области. Тогда масса элементарной области Dvk приближенно равна = f(Mk) . Суммируя все такие массы элементарных областей (составляя интегральную сумму), приближенно получим массу области V 

Для того, чтобы точно вычислить массу области, остается перейти к пределу при условии (условие B).

Рекомендуемые материалы

.

Так задача о массе пространственной области приводит к тройному интегралу[1].

Введем некоторые ограничения на область интегрирования и подинтегральную функцию, достаточные для существования интеграла[2].

Потребуем, чтобы функция f(M) была непрерывна в области V и на ее границе.

Потребуем, чтобы область V была замкнутой, ограниченной, пространственно-односвязной областью с кусочно-гладкой границей.

Область назовем пространственно-односвязной, если ее можно непрерывной деформацией стянуть в точку.

Теорема существования. Пусть область V и функция f(M)=f(x, y, z) удовлетворяют сформулированным требованиям. Тогда тройной интеграл существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит[3]:

1) от выбора разбиения области, лишь бы выполнялось условие А

2) от выбора отмеченных точек на элементах разбиения

3) от способа измельчения разбиения, лишь бы выполнялось условие B.

Свойства тройного интеграла.

1. Линейность
а) =+

б) =
Эти свойства, как и для двойного интеграла, доказываются «через интегральные суммы». Составляют интегральную сумму для интегралов, стоящих в левой части равенства, в ней делают нужную операцию (это возможно, т.к. число слагаемых конечно) и получают интегральные суммы для интегралов в правой части. Затем, по теореме о предельном переходе в равенстве, переходят к пределу, и свойство доказано.

2. Аддитивность (по множеству)
=+

Доказательство проводится, как и ранее, через интегральные суммы с использованием замечания к теореме существования.

Разбиение выбирается и измельчается так, чтобы граница областей V, W состояла из границ элементов разбиения (это можно сделать, учитывая замечание). Тогда интегральная сумма для интеграла в левой части равенства равна сумме двух интегральных сумм, каждая для своего для интеграла в правой части равенства. Переходя к пределу в равенстве, получаем требуемое соотношение.

3. , где  – объем области V.
Интегральная сумма для интеграла в левой части =

4. Если f(x, y, z) ³g(x, y, z), то ³.
Переходя к пределу в неравенстве ³(по теореме о переходе к пределу в неравенстве), получим требуемое соотношение.
Следствие. Если f(x, y, z) ³0, то ³0.

5. Теорема об оценке интеграла. Если m £f(x, y, z) £M, то mV££MV.
Интегрируя неравенство m £f(x, y, z) £M, по свойству 4 получим требуемое неравенство.

6. Теорема о среднем. Пусть выполнены требования теоремы существования. Тогда
Существует точка С в области V, такая, что f(C) = .

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань  и верхняя грань . Выполнено неравенство . Деля обе части на  получим . Но число  заключено между нижней и верхней гранью функции. Так как функция  непрерывна на замкнутом ограниченном множестве , то в некоторой точке  функция должна принимать это значение. Следовательно,  .

Вычисление тройного интеграла в декартовой системе координат.

y(x,y)j(x,y )

Пусть пространственное тело проектируется на плоскость OXY в область D, а на ось OZ в отрезок [c, d].Пусть «верхняя» граница тела описывается уравнением поверхности z = y(x, y), «нижняя» – уравнением z = j(x, y).

Пусть элемент DV пространственного тела V проектируется на плоскость OXY в область Dxy , а на ось OZ в отрезок  [z, z+Dz]. Для того чтобы вычислять тройной интеграл как предел интегральных сумм, нужно в интегральной сумме перебирать эти элементы по определенному алгоритму.

Если сначала перебирать элементы в столбце над областью Dxy, от нижней границы до верхней (внутренний интеграл), а затем перемещать область Dxy в D (внешний двойной интеграл), то получим повторный интеграл.

Если сначала перебирать элементы в слое [z, z+Dz] (внутренний интеграл), а затем .перемещать слой на [c, d], (внешний интеграл), то получим повторный интеграл .И в том, и в другом случае тройной интеграл сводится к определенному и двойному интегралам.

Пример. Вычислить массу тетраэдра плотностью f(x, y, z) = z, ограниченного плоскостями  x+y+z = 1, x+z =1, x+y = 1, y+z =1.

Лекция "5.3 Усиление абсолютизма в первой половине XIX в" также может быть Вам полезна.



[1] Здесь интеграл вводится несколько упрощенно. Более строгое определение интеграла приведено в выпуске VII учебника.

[2] Эти требования можно ослабить, распространив интеграл на функции со счетным числом разрывов первого рода (выпуск VII.учебника).

[3] Это очевидно, иначе предел не существует, но это стоит подчеркнуть.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее