Главная » Лекции » Разное » История естествознания » 9 Состояние наук о природе в эллинистическом мире

9 Состояние наук о природе в эллинистическом мире

2021-03-09 СтудИзба

2.4. Состояние наук о природе в эллинистическом мире. III до н.э. – III н.э.

Начиная с Аристотеля разделение наук, стихийно начатое еще ранее, получило свое теоретическое обоснование. Великих философских систем уже не рождал греческий дух, зато в отдельных науках и, прежде всего естественных, наблюдался значительный прогресс. Этот период связан с Александрией Египетской, с городом, где благодаря династии Птолемеев был создан центр наук - Мусейон и где ученые поддерживались государством. Знаменита Александрийская библиотека, содержавшая при Цезаре 700 тыс. свитков. С Александрией связана деятельность таких ученых как Евклид, Архимед, Аристарх, Герон, Феофраст и многих других. 3десь же был и центр истории, филологии, изобразительных искусств.

Поскольку состоянию математики и физики было уже уделено достаточное внимание, причем затронута и поздняя, эллинистическая эпоха, рассмотрим сейчас развитие других наук естественного ряда.

Механика

Если вы заметили, то механика, очень рано выделившаяся в отдельную область деятельности, не фигурирует в качестве самостоятельной ни в иерархии наук Платона, ни даже Аристотеля. С чем это связано? Для античного мышления характерно противопоставление естественного с одной стороны и искусственного, созданного человеком, с другой. Для античности именно здесь разделялись наука и техника. Физика рассматривает природу вещей, их сущность, их свойства, движения и рассматривает так, как они существуют сами по себе. Механика же -  это искусство, позволяющее создавать инструменты для осуществления таких действий, которые не могут быть произведены самой природой. Механика для древних это вовсе не часть физики, а особое искусство построения машин, оно не может добавить ничего существенного к познанию природы, ибо представляет собой не познание того, что есть в природе, а изобретение того, чего в природе нет. Само слово “механика” означает “орудие”, более того ухищрение, уловка.

 То есть механика есть средство перехитрить природу и получить пользу. А известно как наука в Древней Греции относилась к пользе. Так, согласно одному анекдоту, однажды к Евклиду подошел юноша и попросил, чтобы тот взял его в ученики. При этом юноша спросил Евклида, какую пользу он получит, изучив геометрию? Согласно преданию, Евклид повернулся к своему рабу и презрительно сказал: "Дай этому человеку 3 обола, пусть он получит от геометрии пользу!" Тем не менее, талант греков и известная простота механики (вспомним О. Конта) привели к большим успехам ее в эллинистический период. Даже Платон “подозревался” в изобретении водяного будильника, а что касается Архимеда, то его механический гений оставил нам множество легенд.

Архимед

Это ученый-естественник в строгом смысле, не философ, хотя очень разносторонний ученый. Он - математик, взявшийся за труднейшие проблемы своего времени: вычисление площадей криволинейных фигур, вычисление поверхностей и объема цилиндра и шара. В его методах проявляются элементы высшей математики, в частности, интегральные методы. Причем уже древние восхищались строгостью, изяществом и простотой его доказательств.

Рекомендуемые файлы

Он - оптик, но, к сожалению, его объемистый труд об отражениях “Катоптрика” не сохранился.

Он - астроном, строитель первого “планетария” (астрономической сферы) и прибора для измерения видимого диаметра Солнца.

Он – физик, создатель гидростатики и автор одноименного закона.

Наконец, он -  механик, причем одновременно и механик-теоретик (создатель статики) и механик-практик - автор многочисленных механических приспособлений, в том числе боевых машин, успешно использовавшихся при обороне Сиракуз.

В гидростатике Архимед формулирует известный закон. При этом он исходит из одного предположения, задающего модель идеальной жидкости: “Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается чем-то другим". Это единственное предположение, исходя из которого, Архимед выводит все остальное.

- Поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли.

- Тела равнотяжелые с жидкостью, будучи опущенными в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости, и не будут двигаться вниз.

- Тело более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной части тела имел вес, равный весу самого тела.

- Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.

- Тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться пока не дойдут до самого низа и в жидкости станут легче на величину веса жидкости в объеме, равному объему погруженного тела.

Все эти положения доказываются. Это великолепный образец математической физики, не имеющий равных вплоть до нового времени. С гидростатическими исследованиями, связан и метод определения удельного веса, разработанный Архимедом. Он всем памятен по известному рассказу Плутарха о короне Гиерона.

В теоретической механике Архимед.- основатель статики, одного из трех разделов механики. Именно он разработал учение о равновесии твердых тел: установил понятие центра тяжести, разработал методы его нахождения, дал первую теорию рычага, вообще создал единую систему, дающую возможность решать задачи на равновесие, которая оформилась в самостоятельную научную область.

В области практической механики Архимед изобрел “архимедов винт” - винт для подъема воды, который затем широко использовался в Египте для подъема воды из Нила на высоту до 4-х метров; около сорока других механических изобретений. Знаменита легенда о боевых машинах Архимеда, построенных им для защиты Сиракуз от римлян, которая имеет под собой несомненное историческое основание. Приведем цитату из Плутарха: “Итак, римляне напали с двух сторон, и сиракузяне растерялись и притихли от страха, полагая, что им нечем сдержать столь грозную силу. Но тут Архимед пустил в ход свои машины, и в неприятеля, наступающего с суши, понеслись всевозможных размеров стрелы и огромные каменные глыбы, летевшие с невероятным шумом и чудовищной скоростью, они сокрушали все и всех на своем пути и приводили в расстройство боевые ряды, а на вражеские суда вдруг стали опускаться укрепленные на стенах, брусья и либо топили их, силою толчка, либо, схватив железными руками или клювами вроде журавлиных, вытаскивали носом вверх из воды, а потом кормою вперед, пускали ко дну, либо, наконец, приведенные в круговое движение скрытыми внутри оттяжными канатами, увлекали за собою корабль и, раскрутив его, швыряли на скалы и утесы у подножия стены, а моряки погибали мучительной смертью. Нередко взору открывалось ужасное зрелище: поднятый высоко над морем корабль раскачивался в разные стороны до тех пор, пока все до последнего человека не оказывались сброшенными за борт или разнесенными в клочья, а опустевшее судно разбивалось о стену или снова падало в воду, когда железные челюсти разжимались.  В конце концов, видя, что римляне запуганы до крайности и что, едва заметив на стене веревку или кусок дерева, они поднимают отчаянный крик и пускаются наутек в полной уверенности, будто Архимед наводит на них какую-то машину, Марцелл отказался от дальнейших стычек и приступов, решив положиться на время”.

Архимед по своему геометрическому подходу к решению физических проблем и ценностным установкам близок, скорее, к математической программе Платона, но по своему инженерному и экспериментальному, опытному характеру идет даже дальше Аристотеля к методам и воззрениям новой физики. Тем не менее, на своей могиле он просил установить памятник с изображением шара, вписанного в цилиндр и надписать установленное им соотношение их объемов 2:3, считая это главной своей заслугой.

Другим великим механиком античности был Герон Александрийский (около 120 г н.э.). Это практик-механик и практик-математик. В математике он разрабатывал методы приближенных вычислений, задачи на землемерение. Его многочисленные механические изобретения, впрочем, носили характер игрушек. Например, автомат для открывания дверей в храм с одновременным возжиганием жертвенного огня. В своих автоматах Герон впервые использовал силу пара. Описание: heron1
Герон по своей научной позиции, ценностным установкам отличен от прежнего направления греческой науки, в его работах чувствуется восточное и римское влияние.

Астрономия

На первом этапе становления греческой астрономии этот процесс шел в двух направлениях:

I) выдвижение астрономических гипотез,

2)развитие систематических и все более точных и регулярных наблюдений.

И лишь в эллинистическую, даже римскую эпоху произошло соединение победившей гипотезы с накопленными наблюдениями, вернее гипотеза побеждает потому, что объясняет наблюдаемое. В первом направлении развивали астрономию в основном философы: Анаксимандр, Анаксимен, Пифагор, Анаксагор, Филолай; во втором – те, кто занимался календарной астрономией: Клеостат с Тенедоса (конец 6-го в. до н.э.), Эпонид Хиосский (ок.450 г.до н.э.), Метон и Евктемон из Афин (ок. 430 г. до н.э.).

В первом процессе было выдвинуто много интересных предположений. По-видимому, пифагорейцам принадлежит идея о шарообразности Земли, очевидно, из идей симметрии и геометрической идеальности. Эта идея стала общепризнанной в античной астрономии.

Еще Анаксимандр выдвинул идею о центральном положении Земли, свободно висящей в пространстве (правда ее форма ему виделась цилиндрической). Парадоксальная идея, но также принятая практически без доказательств.

Выдвигались разного рода негеоцентрические системы. Из них первой следует признать пифагорейскую, согласно которой в центре мира находится огонь - Гестия. Земля совместно с подобной ей Противоземлей вращается вокруг Гестии. Гестия в находящуюся между Землей и Противоземлей щель посылает свет, отражением которого светит Солнце, планеты и звезды. Подвижные планеты, Луна и Солнце находятся на одной оси. Наиболее близкой к современным воззрениям следует признать гелиоцентрическую систему Аристарха Самосского (ок. 250 г. до н.э.) С точки зрения кинематики совершенно безразлично, обращается ли Земля вокруг Солнца или Солнце вокруг Земли: расстояние между ними остается неизменным. Вопрос, находится ли Земля в центре мира всегда упирался в поведение “сферы неподвижных звезд”. Она ведет себя так, словно ее центр совпадает с центром Земли (звезды неизменно сохраняют свое взаимное расположение). Простые законы перспективы указывают на то, что если бы Земля перемещалась внутри этой сферы, то созвездия, к которым она приближается, казались бы крупней, в то время как на противоположной стороне неба созвездия выглядели бы “сжимающимися”. Отсутствием таких явлений объяснялось расположением Земли в центре мира. Как потом стало ясно, это в действительности объясняется тем, что расстояния до звезд очень велики. Аристарх Самосский как раз считал звезды неподвижными и удаленными практически бесконечно от Земли, а Солнце, находящимся в центре, вокруг которого движется Земля, вращаясь суточным обращением. “Сфера звезд ...так велика, что круг, по которому обращается Земля, так относится к расстоянию до неподвижных звезд, как центр сферы к ее поверхности”. (Rорб.Земли/Rнепод. звезд = RСолнца/Rорб.Земли ). Исходя из этой системы, он рассчитал соотношение между диаметрами Земли, Солнца и Луны и диаметрами орбит Земли и Луны. Причем методы расчета были безупречны, но точность измерения весьма низка, и поэтому результаты далеки от действительных.

Система Аристарха Самосского не была принята современиками. Почему? Из нее вытекали два следствия, не гармонирующие с античным представлением о космосе: практическая его бесконечность и разноприродность планет и звезд. Птолемей оценивает расстояние от Земли до Солнца в 1200 радиусов Земли, что в

10000 раз меньше действительного. По - видимому большинство греческих ученых не могло согласиться с тем, что звезды находятся невообразимо далеко от Земли.

“Генеральной линией” развития греческой космологии стала геоцентрическая система Платона - Аристотеля – Птолемея. Платон поручил своему ученику Евдоксу Книдскому (408 – З55 гг. до н.э.) разработать астрономическую модель Вселенной в соответствие со своими космогоническими идеями, что последний и осуществил. В результате возникла система, в которой небесные светила располагались на правильных сферах (хрустальных).

Оси вращения у сфер были разные, причем ось вращения предыдущей сферы наклонно закреплялась на последующей. Сложение ряда вращений, происходящих в разных плоскостях, давало качественно верную картину небесных движений. В частности, оно объясняло ставшие в это время известными грекам (вероятно из вавилонских наблюдений) попятные движения планет. Эта система лежит и в основе космологии Аристотеля. Гераклит Понтийский в разработке этой системы добавил идею о том, что Меркурий и Венера вращаются вокруг Солнца.

Основным недостатком вышеприведенной модели было то, что она не объясняла неодинаковых расстояний между Землей и планетами, в частности, наблюдаемое увеличение яркости Марса в моменты противостояний. Впервые Апполоний Пергамский (262 - 200 гг.до н.э.)предположил движение планет по эксцентрическим орбитам, равноценным по кинематике эпициклическому движению. Однако признанным автором теории эпициклов и эксцентриков является Клавдий Птолемей с его знаменитым трудом Альмагест (арабское название, первоначально «Синтаксис»).

В основе космоса Птолемея лежит эпицикличесекая модель движения светил вокруг центра Земли. Наблюдатель находится в точке О (Земля). По окружности АА1А2 … – деференту равномерно относительно О вращается центр эпицикла А небесного тела.  Эпициклом планеты называется окружность, которую описывает планета вокруг центра А равномерно.

Греческие астрономы использовали эпициклическую систему двумя способами: 

1. Эксцетр. Радиус эпицикла МА всегда параллелен некоей прямой ОС. На рис. точка М всегда находится выше точки А. Тогда эпицикл вырождается в эксцентр. В такой модели планета М движется равномерно относительно точки С, которая не совпадает с точкой О, где находится наблюдатель. Расстояние ОС называется эксцентриситетом. Расположение планеты в точке М (на максимальном удалении от наблюдателя) называется апогеем, в точке М45 (на минимальном удалении от наблюдателя) – перигей. Модель эксцентра использовалась для описания движения Солнца. Погрешность модели для Солнца меньше 1 минуты. (см. рис. «Надо сделать).

2. Эквант. Круг деферента ABG имеет центр в точке С. Точка А – центр эпицикла находится всегда на деференте, но ее вращение вокруг С не является равномерным. Это движение равномерно относительно точки Д. Наблюдатель находится в точке О (Земля). Планета М движется равномерно по кругу с центром в А. Эквантом называется точка Д для наблюдателя О. По этой модели в системе Птолемея движутся Венера и внешние планеты – Марс, Юпитер, Сатурн.

Еще более сложные модели строит Птолемей для движения Луны и Меркурия (вращение экванта Д). Задачей Птолемея помимо задания геометрической модели, было определение многочисленных параметров этого сложного движения. Эту задачу он решает с использованием астрономических наблюдений, проведенных им самим и предшествующими греческими и вавилонскими астрономами, причем делает это не всегда методически корректно.

Оптика. Представления о природе зрения в Древней Греции.
Оптика – один из самых древних разделов физики, внимание к природе зрительных ощущений характерно почти для всех греческих ученых и философов. В греческом мире существовали две основные теории зрения [4]:

1.                          Атомисты- “физики” объясняли возникновение зрительных ощущений истечением “образов” или “призраков” из светящихся тел (Левкипп, Демокрит, Эпикур). Зрительные ощущения возникают благодаря проникновению «образов» в тело человека. “Призраки” распространяются прямолинейно (Лукреций Карр) в отличие от звуков: “Мы не способны видеть сквозь стены домов, голоса же оттуда мы слышим”. По Анаксагору образы есть “отражения”. Причиной отражений является свет (поэтому мы видим днем). Видим мы благодаря отражению в зрачках. Ощущение вызывается противоположным, то есть преобладающий цвет скорее отражается на противоположный.

2.                          Пифагорейцы - “математики” разработали субъективную теорию. Согласно ей свет распространяется благодаря зрительным лучам (opsies), исходящим из глаза и как-бы ощупывающим видимые предметы. К этой школе относились виднейшие греческие математики: Евдокс, Евклид и Птолемей.

Воззрения Эмпедокла можно назвать попыткой соединения двух теорий. Согласно ей от видимых предметов происходят “истечения”, флюиды, но глаз сам имеет “огненную природу”, испускает “свет очей” и зрительное ощущение происходит благодаря слиянию этих истечений. Если флюиды из глаз и от предметов подобны, то мы видим, если нет, то они взаимоуничтожаются и глаз не получает никаких ощущений. Аристотель с одной стороны придерживался теории зрительных лучей (Meteorologika). С другой стороны, критиковал ее, ибо если лучи исходят из глаз (как огонь из фонаря), то почему мы не видим в темноте?

В духе Платона Евклид, исходя из теории зрительных лучей, строит геометрическую оптику, которая не теряет своего значения до наших дней, устанавливает закон отражения. Птолемей исследует явление преломления света (в воде) и экспериментально находит ряд углов преломления, соответствующих определенным углам падения. Находясь на пороге открытия закона преломления, он, тем не менее, делает неверный вывод о постоянстве отношения углов (а не их синусов).

Акустика

Обратите внимание на лекцию "2. Дифференциальные зависимости при изгибе".

Первыми исследованиями по акустике можно считать эксперименты Пифагора со струнами и найденные им отношения музыкальной гармонии. Пифагорейцы проводили подобные опыты с духовыми инструментами, с сосудами одинаковой формы, которые заполнялись различными объемами воды. Звук они совершенно верно представляли как совокупность следующих друг за другом толчков воздуха. Высоту звука также верно связывали с частотой колебаний. Однако скорость звука считали зависящей от частоты.

Атомисты (Лукреций) считают звук субстанцией – это атомы: “ ….Ибо и голос и звук непременно должны быть телесны, В уши внедряются нам разновидные первоначала” Разнообразию звуков обязаны мы разнообразием звуковых частиц.

Подробное изложение акустических вопросов дается у римского военного инженера и архитектора Витрувия (50 г. до н. э. – 20 г. н. э.). Он продолжает линию Аристотеля, а точнее, его ученика Аристоксена. Аристоксен отрицал наличие количественных отношений в акустике: “Для этого они (пифагорейцы) придумывают чисто умственные причины и утверждают, что высота или низкость тона основываются на определенных соотношениях между числами и скоростями. Все это рассуждение совершенно чуждо существу дела и совершенно противоположно явлениям”. Тем не менее, качественно Аристоксен и его продолжатель Витрувий дают верную теорию звука: “Голос же есть текучая струя воздуха, которая, соприкасаясь со слухом, ощущается им. Голос движется по бесконечно расширяющимся окружностям, подобно тем бесчисленным кругам волн, которые возникают на спокойной воде, если бросить в нее камень. Если они прерываются препятствиями, то первые из них, отливая назад, расстраивают очертания последующих…”. Таким образом, высказана верная идея о волновой природе звука. Витрувий – строитель театральных зданий, что объясняет его интерес к акустике.

Однако в целом наступление римской эпохи печально сказалось на состоянии античной науки. После Герона и Птолемея наступил упадок физики. Первые его признаки появились еще ранее, со временем же он становился все глубже и глубже. Свежие, оригинальные исследования уступили место компиляциям, бесконечным повторам. Римляне, вступившие в контакт с греческой наукой периода упадка, переняли ее в тех частях, которые могли иметь непосредственное практическое применение. Фундаментальные исследования природы не вызывали интереса. В римской литературе трудно найти оригинальные научные работы, если не считать, возможно, труды Полибия по истории(увы, по глубине анализа они уже уступают Фукидиду, там где греки находили ясную взаимосвязь явлений Полибий зачастую ссылается на судьбу). Позднее забрасываются и прикладные исследования, развитие новых религий вначале только отнимает внимание мыслителей от науки. Затем религиозные фанатики целенаправленно уничтожают как самих ученых, так и научные работы,  пытаясь уничтожить все несоответствующее их видению мира.

Со смертью Боэция (480 – 525 гг.) традиции греческой школы были надолго забыты.

Свежие статьи
Популярно сейчас