Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » [учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003)

[учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003) ([учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003).pdf), страница 4

PDF-файл [учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003) ([учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003).pdf), страница 4 Теория игр и исследование операций (64204): Книга - 11 семестр (3 семестр магистратуры)[учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003) ([учебник] Введение в теорию игр (с приложениями к экономике). Вас2020-08-25СтудИзба

Описание файла

PDF-файл из архива "[учебник] Введение в теорию игр (с приложениями к экономике). Васин, Морозов (2003).pdf", который расположен в категории "". Всё это находится в предмете "теория игр и исследование операций" из 11 семестр (3 семестр магистратуры), которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 4 страницы из PDF

Çäåñü ïðèìåðîì ñìåøàííîé ñòðàòåãèè ìîæåò ñëóæèòü âåðîÿòíîñòíàÿ ìåðà, ñîñðå18Ÿ 3. Ñìåøàííûå ðàñøèðåíèÿ àíòàãîíèñòè÷åñêèõ èãðäîòî÷åííàÿ â êîíå÷íîì ÷èñëå òî÷åê:ϕ(x) =mXpi Ix(i) (x),i=1mXpi = 1, pi ≥ 0, x(i) ∈ X, i = 1, ..., m,i=1ãäå(1, x = x(i) ,Ix(i) (x) =0, x =6 x(i) .Îòìåòèì, ÷òî äëÿ ëþáîãî áîðåëåâñêîãî ìíîæåñòâà B ϕ(B) =Ppi .i:x(i) ∈BÏðè èñïîëüçîâàíèè ìåðû ϕ ñòðàòåãèÿ x(i) âûáèðàåòñÿ ñ âåðîÿòíîñòüþ pi .Èíòåãðàë îò íåïðåðûâíîé ôóíêöèè h(x) ïî ðàññìàòðèâàåìîé ìåðå èìååòâèäZmXh(x)dϕ(x) =pi h(x(i) ).i=1XÎáîçíà÷èì ÷åðåç {ϕ} − ìíîæåñòâî âñåõ ñìåøàííûõ ñòðàòåãèé ïåðâîãî èãðîêà íà ìíîæåñòâå X. Ìîæíî ñ÷èòàòü, ÷òî X ⊂ {ϕ}. Äåéñòâèòåëüíî,â ïîñëåäíåì ñëó÷àå ñòðàòåãèþ x ìîæíî îòîæäåñòâèòü ñ âåðîÿòíîñòíîéìåðîé Ix .

Åñëè ìíîæåñòâî X êîíå÷íî, òî âûáîð i ýêâèâàëåíòåí âûáîðóñìåøàííîé ñòðàòåãèè p = (0, ..., 0, 1, 0, ..., 0), ãäå åäèíèöà ñòîèò íà i-ì ìåñòå, à ïðè X = [a, b] ñòðàòåãèþ x ∈ [a, b] ìîæíî îòîæäåñòâèòü ñ ôóíêöèåéðàñïðåäåëåíèÿ, èìåþùåé ñêà÷îê 1 â òî÷êå x.Ìíîæåñòâî X áóäåì íàçûâàòü ìíîæåñòâîì ÷èñòûõ ñòðàòåãèé ïåðâîãîèãðîêà (â ïðîòèâîâåñ ñìåøàííûì).Çàéìåìñÿ ïîñòðîåíèåì ñìåøàííîãî ðàñøèðåíèÿ àíòàãîíèñòè÷åñêîé èãðû Γ = X, Y, F (x, y) . Ìû îïðåäåëèëè ìíîæåñòâî {ϕ} ñìåøàííûõñòðàòåãèé ïåðâîãî èãðîêà. Àíàëîãè÷íî, ïóñòü {ψ} − ìíîæåñòâî ñìåøàííûõ ñòðàòåãèé âòîðîãî èãðîêà, ò.å.

âåðîÿòíîñòíûõ ðàñïðåäåëåíèé ψ íàìíîæåñòâå Y åãî ÷èñòûõ ñòðàòåãèé. Ïðè çàäàííûõ ñòðàòåãèÿõ ϕ è ψìàòåìàòè÷åñêîå îæèäàíèå âûèãðûøà ïåðâîãî èãðîêà îïðåäåëÿåòñÿ ôîðìóëîéZ ZF (ϕ, ψ) =F (x, y)dϕ(x)dψ(y).X YÇäåñü ïðåäïîëàãàåòñÿ, ÷òî äâîéíîé èíòåãðàë ñóùåñòâóåò.Îïðåäåëåíèå. Àíòàãîíèñòè÷åñêàÿ èãðàΓ = {ϕ}, {ψ}, F (ϕ, ψ)19ÃËÀÂÀ I. ÀÍÒÀÃÎÍÈÑÒÈ×ÅÑÊÈÅ ÈÃÐÛíàçûâàåòñÿ ñìåøàííûì ðàñøèðåíèåì èãðû Γ.Îïðåäåëåíèå. Ðåøåíèå (ϕ0 , ψ 0 , v = F (ϕ0 , ψ 0 )) èãðû Γ íàçûâàåòñÿ ðåøåíèåì èñõîäíîé èãðû Γ â ñìåøàííûõ ñòðàòåãèÿõ.

Ïðè ýòîì ϕ0 , ψ 0 íàçûâàþòñÿ îïòèìàëüíûìè ñìåøàííûìè ñòðàòåãèÿìè èãðîêîâ, à v − çíà÷åíèåì èãðû Γ.Äàëåå áóäóò ïîñòðîåíû ñìåøàííûå ðàñøèðåíèÿ ìàòðè÷íûõ è íåïðåðûâíûõ èãð è áóäåò ïîêàçàíî, ÷òî ýòè èãðû âñåãäà èìåþò ðåøåíèå âñìåøàííûõ ñòðàòåãèÿõ.Íàïîìíèì, ÷òî ìàòðè÷íàÿ èãðà Γ çàäàåòñÿ ìàòðèöåé A = (aij )m×n .Ìíîæåñòâî ñìåøàííûõ ñòðàòåãèé ïåðâîãî èãðîêà −P = {p = (p1 , ..., pm ) |mXpi = 1, pi ≥ 0, i = 1, ..., m},i=1ìíîæåñòâî ñìåøàííûõ ñòðàòåãèé âòîðîãî èãðîêà −Q = {q = (q1 , ..., qn ) |nXqj = 1, qj ≥ 0, j = 1, ..., n},j=1à ìàòåìàòè÷åñêîå îæèäàíèå âûèãðûøà ïåðâîãî èãðîêà −A(p, q) =m XnXpi aij qj .i=1 j=1Òàêèì îáðàçîì, Γ = P, Q, A(p, q) − ñìåøàííîå ðàñøèðåíèå ìàòðè÷íîéèãðû Γ.Òåîðåìà 3.1 (Îñíîâíàÿ òåîðåìà ìàòðè÷íûõ èãð).

Âñÿêàÿ ìàò-ðè÷íàÿ èãðà èìååò ðåøåíèå â ñìåøàííûõ ñòðàòåãèÿõ.Äîêàçàòåëüñòâî. Äîñòàòî÷íî äîêàçàòü ,÷òî ôóíêöèÿ A(p, q) èìååòñåäëîâóþ òî÷êó íà P ×Q. Ìíîæåñòâà P, Q − ìíîãîãðàííèêè åâêëèäîâûõïðîñòðàíñòâ, à ôóíêöèÿ A(p, q) áèëèíåéíà è ïîýòîìó íåïðåðûâíà íà P ×Q, âîãíóòà ïî p è âûïóêëà ïî q . Ïî òåîðåìå 2.3 ôóíêöèÿ A(p, q) èìååòíà P × Q ñåäëîâóþ òî÷êó.Óïðàæíåíèå 3.1. Ïîêàæèòå, ÷òî òðîéêà(p0 , q 0 , v) = ((1/2, 1/2), (1/2, 1/2), 0)− ðåøåíèå â ñìåøàííûõ ñòðàòåãèÿõ èãðû "îðëÿíêà".Îòìåòèì òèïè÷íûå ñëó÷àè, êîãäà ïðèìåíÿþòñÿ ñìåøàííûå ñòðàòåãèè.20Ÿ 3.

Ñìåøàííûå ðàñøèðåíèÿ àíòàãîíèñòè÷åñêèõ èãð1) Èãðà ïîâòîðÿåòñÿ ìíîãî ðàç.  ýòîì ñëó÷àå çà áîëüøîå ÷èñëî ïîâòîðåíèé èãðû ñðåäíèé âûèãðûø ïåðâîãî èãðîêà, èñïîëüçóþùåãî îïòèìàëüíóþ ñìåøàííóþ ñòðàòåãèþ, áóäåò áëèçîê ê çíà÷åíèþ èãðû èëè áóäåò ïðåâûøàòü åãî.2) Ñìåøàííàÿ ñòðàòåãèÿ ðåàëèçóåòñÿ â âèäå "ôèçè÷åñêîé ñìåñè"÷èñòûõñòðàòåãèé. ×òî ýòî îçíà÷àåò, ïîÿñíèì íà ïðèìåðàõ.Ïðèìåð 3.2.

Èãðà ïðîòèâ ïðèðîäû. Ôåðìåð (èãðîê 1 ) èìååò ó÷àñòîêçåìëè, êîòîðûé ìîæíî çàñåÿòü òðåìÿ ñåëüñêîõîçÿéñòâåííûìè êóëüòóðàìè. Ãîä ìîæåò áûòü íîðìàëüíûì, çàñóøëèâûì è äîæäëèâûì (ýòî òðèñòðàòåãèè èãðîêà 2 − ïðèðîäû). Ïóñòü H = (hij )3×3 − ìàòðèöà óðîæàéíîñòè, à bi − öåíà çà åäèíèöó ïðîäóêöèè i-ãî âèäà. Òîãäà A = (bi hij )3×3 −ìàòðèöà èãðû, ãäå âûèãðûø ôåðìåðà − ñòîèìîñòü ïðîèçâåäåííîé ïðîäóêöèè. Ïóñòü p0 = (1/2, 1/4, 1/4) − îïòèìàëüíàÿ ñìåøàííàÿ ñòðàòåãèÿïåðâîãî èãðîêà.

Ðåàëèçîâàòü åå ìîæíî, çàñåÿâ ïîëîâèíó ó÷àñòêà ïåðâîéêóëüòóðîé, à îñòàâøèåñÿ äâå ÷åòâåðòè − âòîðîé è òðåòüåé êóëüòóðàìè.Ïðèìåð 3.3. Íåêîòîðàÿ ñòðàíà (èãðîê 1) èñïîëüçóåò òðè òèïà èñòðåáèòåëåé äëÿ áîðüáû ñ ñàìîëåòàìè ïðîòèâíèêà (èãðîêà 2). Åñëè èñòðåáèòåëüòèïà i ïåðâîãî èãðîêà âñòðå÷àåòñÿ ñ ñàìîëåòîì òèïà j âòîðîãî èãðîêà,òî îí ïîáåæäàåò ïðîòèâíèêà ñ âåðîÿòíîñòüþ aij . Ñìåøàííàÿ ñòðàòåãèÿp0 = (1/2, 1/4, 1/4) ïåðâîãî èãðîêà ìîæåò áûòü ðåàëèçîâàíà â âèäå ïàðêàèñòðåáèòåëåé ñ ïðîïîðöèÿìè òèïîâ 2:1:1.3) Ñìåøàííûå ñòðàòåãèè ìîæíî ïðèìåíÿòü è ïðè îäíîêðàòíîì ïîâòîðåíèè èãðû, êîãäà èãðîê äåéñòâóåò â óñëîâèÿõ ðèñêà. Ïðè ýòîì íåîáõîäèìî âûèãðûøè çàìåíèòü íà èõ "ïîëåçíîñòè", ó÷èòûâàþùèå îòíîøåíèåèãðîêà ê ðèñêó.ÏðèìåðÏóñòü èãðîê âûíóæäåí îäèí ðàç ñûãðàòü â èãðó ñ ìàòðè 3.4.

10 0öåé A =. Âûèãðûøàì 10 è 0 ïðèïèøåì ïîëåçíîñòè 1 è 0. Îïðå0 5äåëèì ïîëåçíîñòü âûèãðûøà 5. Ïóñòü â íåêîòîðîé ëîòåðåå âûèãðûø 10îæèäàåòñÿ ñ âåðîÿòíîñòüþ 0 < a < 1. Ïåðâîìó èãðîêó ïðåäëàãàåòñÿ âûáðàòü òàêîå çíà÷åíèå a, ïðè êîòîðîì èãðîê ñîãëàñåí êóïèòü ëîòåðåéíûéáèëåò ïî öåíå 5. Âûáðàííîå çíà÷åíèå a è áóäåò ïîëåçíîñòüþ âûèãðûøà5. Åñëè a = 1/2, òî îòíîøåíèå èãðîêà ê ðèñêó íåéòðàëüíîå, åñëè a > 1/2,òî èãðîê îñòîðîæåí, à åñëè a < 1/2, òî èãðîê àçàðòåí.Ýëåìåíòû òåîðèè ïîëåçíîñòè ñì. â êîíöå äàííîãî ïàðàãðàôà.Çàéìåìñÿ ñìåøàííûì ðàñøèðåíèåì íåïðåðûâíîé èãðû Γ. Îãðàíè21ÃËÀÂÀ I.

ÀÍÒÀÃÎÍÈÑÒÈ×ÅÑÊÈÅ ÈÃÐÛ÷èìñÿ èãðîé íà ïðÿìîóãîëüíèêå X × Y = [a, b] × [c, d]. Ïðè çàäàííûõñòðàòåãèÿõ ϕ è ψ − ôóíêöèÿõ ðàñïðåäåëåíèÿ íà îòðåçêàõ X è Y − îæèäàåìûé âûèãðûø F (ϕ, ψ) ïåðâîãî èãðîêà ðàâåíZb ZdF (ϕ, ψ) =F (x, y)dϕ(x)dψ(y).acÇäåñü äâîéíîé èíòåãðàë îò íåïðåðûâíîé ôóíêöèè F (x, y) ñóùåñòâóåò.Áîëåå òîãî, ïî òåîðåìå Ôóáèíè îí ðàâåí ïîâòîðíîìóZbF (ϕ, ψ) =ZdF (x, ψ)dϕ(x) =aF (ϕ, y)dψ(y),cãäåZdF (x, ψ) =ZbF (x, y)dψ(y), F (ϕ, y) =cF (x, y)dϕ(x).aÈòàê, ïîñòðîåíî cìåøàííîå ðàñøèðåíèå Γ = {ϕ}, {ψ}, F (ϕ, ψ) íåïðåðûâíîé èãðû Γ íà ïðÿìîóãîëüíèêå.

Íàøà áëèæàéøàÿ öåëü − äîêàçàòüñóùåñòâîâàíèå ðåøåíèÿ èãðû Γ.Íàì ïîòðåáóåòñÿ èçâåñòíûé ðåçóëüòàò.Òåîðåìà 3.2. Ìíîæåñòâî ñìåøàííûõ ñòðàòåãèé {ϕ} íà îòðåçêå [a, b]ÿâëÿåòñÿ ñëàáûì êîìïàêòîì. Ýòî îçíà÷àåò, ÷òî èç ëþáîé ïîñëåäîâàòåëüíîñòè ñìåøàííûõ ñòðàòåãèé {ϕk } ìîæíî âûäåëèòü ïîäïîñëåäîâàòåëüíîñòü {ϕkl }, ñëàáî ñõîäÿùóþñÿ ê íåêîòîðîé ñòðàòåãèè ϕ0 , ò.å.

òàêóþ, ÷òîäëÿ ëþáîé íåïðåðûâíîé íà îòðåçêå [a, b] ôóíêöèè h(x) âûïîëíåíîZbliml→∞h(x)dϕkl (x) =aZbh(x)dϕ0 (x).aËåììà 3.1.  íåïðåðûâíîé èãðå Γ íà ïðÿìîóãîëüíèêå ñóùåñòâóþòìàêñèìèííàÿ è ìèíèìàêñíàÿ ñìåøàííûå ñòðàòåãèè èãðîêîâ.Äîêàçàòåëüñòâî. Ðàññìîòðèì âûðàæåíèÿv = sup inf F (ϕ, ψ), v = infϕ∈{ϕ} ψ∈{ψ}sup F (ϕ, ψ)ψ∈{ψ} ϕ∈{ϕ}22Ÿ 3. Ñìåøàííûå ðàñøèðåíèÿ àíòàãîíèñòè÷åñêèõ èãðè äîêàæåì, ÷òî âíåøíèå sup è inf â íèõ äîñòèãàþòñÿ. Ïî îïðåäåëåíèþâåðõíåé ãðàíè v íàéäåòñÿ òàêàÿ ïîñëåäîâàòåëüíîñòü ñìåøàííûõ ñòðàòåãèé {ϕk }, ÷òîinf F (ϕk , ψ) ≥ v − εk , εk → 0+,ψ∈{ψ}èëèZF (x, ψ)dϕk (x) ≥ v − εk ∀ ψ ∈ {ψ}, k = 1, 2, ....(3.1)XÂûäåëèì èç {ϕk } ïîäïîñëåäîâàòåëüíîñòü {ϕkl }, ñëàáî ñõîäÿùóþñÿ êñìåøàííîé ñòðàòåãèè ϕ0 .

Çàìåòèì, ÷òî ïðè ôèêñèðîâàííîé ñòðàòåãèè ψôóíêöèÿ F (x, ψ) íåïðåðûâíà ïî x. Ïåðåõîäÿ â (3.1) ê ïðåäåëó ïî ïîäïîñëåäîâàòåëüíîñòè {kl }, ïîëó÷èì íåðàâåíñòâî F (ϕ0 , ψ) ≥ v ∀ ψ ∈ {ψ}.Îòñþäàinf F (ϕ0 , ψ) ≥ v ⇒ inf F (ϕ0 , ψ) = vψ∈{ψ}ψ∈{ψ}è ϕ0 − ìàêñèìèííàÿ ñìåøàííàÿ ñòðàòåãèÿ ïåðâîãî èãðîêà. Àíàëîãè÷íîäîêàçûâàåòñÿ ñóùåñòâîâàíèå ìèíèìàêñíîé ñìåøàííîé ñòðàòåãèè.Ëåììà 3.2.

Ðàññìîòðèì äâå àíòàãîíèñòè÷åñêèå èãðûΓ = X, Y, F (x, y) , Γ = X, Y, F 0 (x, y) ,â êîòîðûõ ôóíêöèè F (x, y) è F 0 (x, y) îãðàíè÷åíû íà X × Y è ïðè ε > 0âûïîëíåíî óñëîâèå|F (x, y) − F 0 (x, y)| ≤ ε ∀ (x, y) ∈ X × Y.Òîãäà |v − v 0 | ≤ ε, |v − v 0 | ≤ ε.Äîêàçàòåëüñòâî. Äëÿ âñÿêîãî x ∈ X ñïðàâåäëèâû íåðàâåíñòâàinf F (x, y) − inf F 0 (x, y) ≥ inf (F (x, y) − F 0 (x, y)) ≥ −ε.y∈Yy∈Yy∈YÌîæíî ïîëó÷èòü àíàëîãè÷íûå íåðàâåíñòâà, ìåíÿÿ ìåñòàìè ôóíêöèèF (x, y) è F 0 (x, y).  ðåçóëüòàòå íàõîäèì, ÷òî| inf F (x, y) − inf F 0 (x, y)| ≤ ε ∀x ∈ X.y∈Yy∈YÄàëåå,sup inf F (x, y) − sup inf F 0 (x, y) ≤ sup( inf F (x, y) − inf F 0 (x, y)) ≤ ε.x∈X y∈Yx∈X y∈Yx∈X y∈Y23y∈YÃËÀÂÀ I. ÀÍÒÀÃÎÍÈÑÒÈ×ÅÑÊÈÅ ÈÃÐÛÊàê è âûøå, íàõîäèì, ÷òî |v − v 0 | ≤ ε.

Àíàëîãè÷íî äîêàçûâàåòñÿ íåðàâåíñòâî |v − v 0 | ≤ ε.Òåîðåìà 3.3 (Îñíîâíàÿ òåîðåìà íåïðåðûâíûõ èãð). Âñÿêàÿíåïðåðûâíàÿ èãðà Γ íà ïðÿìîóãîëüíèêå èìååò ðåøåíèå â ñìåøàííûõñòðàòåãèÿõ.Äîêàçàòåëüñòâî. Ïî òåîðåìå 2.1 äîñòàòî÷íî äîêàçàòü ðàâåíñòâî âåëè÷èí v = max inf F (ϕ, ψ) è v = min sup F (ϕ, ψ).ϕ∈{ϕ} ψ∈{ψ}ψ∈{ψ} ϕ∈{ϕ}Çàìåòèì, ÷òî äîñòèæèìîñòü çäåñü âíåøíèõ ìàêñèìóìîâ è ìèíèìóìîâ âûòåêàåò èç ëåììû 3.1.

Âîçüìåì ïðîèçâîëüíîå ε > 0. Èç íåïðåðûâíîñòè ôóíêöèè F (x, y) ñëåäóåò ñóùåñòâîâàíèå òàêîãî ðàçáèåíèÿ îòðåçêàX = [a, b] íà íåïåðåñåêàþùèåñÿ ïðîìåæóòêè (îòðåçîê è ïîëóèíòåðâàëû)X i , i = 1, ..., m è òàêîãî ðàçáèåíèÿ îòðåçêà Y = [c, d] íà àíàëîãè÷íûåïðîìåæóòêè Y j , j = 1, ..., n, ÷òî|F (x, y) − F (x0 , y 0 )| ≤ ε ∀ (x, y), (x0 , y 0 ) ∈ X i × Y j , ∀ i, j.(3.2)Äëÿ ëþáûõ i, j âîçüìåì òî÷êè xi ∈ X i , y j ∈ Y j è îïðåäåëèì ñòóïåí÷àòóþ ôóíêöèþF1 (x, y) = F (xi , y j ) ∀ (x, y) ∈ X i × Y j , i = 1, ..., m, j = 1, ..., n.Òîãäà èç (3.2) ñëåäóåò, ÷òî|F (x, y) − F1 (x, y)| ≤ ε ∀ (x, y) ∈ X × Y.(3.3)Èòàê, ôóíêöèÿ F1 (x, y) àïïðîêñèìèðóåò ôóíêöèþ F (x, y) ñ òî÷íîñòüþ äîε > 0. Íåïðåðûâíàÿ èãðà Γ ôàêòè÷åñêè ïðèáëèæåíà èãðîé ñ ìàòðèöåéA = (aij )m×n = (F (xi , y j ))m×n .Âñÿêîé ñìåøàííîé ñòðàòåãèè ϕ ïîñòàâèì â ñîîòâåòñòâèå âåêòîðZp = (p1 , ..., pm ) : pi = dϕ(x), i = 1, ..., m,Xiãäå pi − âåðîÿòíîñòü ïîïàäàíèÿ ðåàëèçàöèè ñìåøàííîé ñòðàòåãèè â ìíîæåñòâî X i (ìåðà ìíîæåñòâà X i ).

Î÷åâèäíî, ÷òî p ÿâëÿåòñÿ ñìåøàííîéñòðàòåãèåé ïåðâîãî èãðîêà â ìàòðè÷íîé èãðå, ò.å. p ∈ P. Ïîñòðîåííîåîòîáðàæåíèå P : {ϕ} → P ÿâëÿåòñÿ îòîáðàæåíèåì íà P. Äåéñòâèòåëüíî, äëÿ ëþáîé ñòðàòåãèè p ∈ P ôóíêöèÿ ðàñïðåäåëåíèÿ ϕ ñî ñêà÷êàìè24Ÿ 3. Ñìåøàííûå ðàñøèðåíèÿ àíòàãîíèñòè÷åñêèõ èãðpi â òî÷êàõ xi ÿâëÿåòñÿ ïðîîáðàçîì p ïðè îòîáðàæåíèè P . Àíàëîãè÷íîîïðåäåëÿåòñÿ îòîáðàæåíèå Q : {ψ} → Q, ãäå Q − ìíîæåñòâî ñìåøàííûõñòðàòåãèé âòîðîãî èãðîêà ìàòðè÷íîé èãðû. Äàëåå, äëÿ ëþáûõ ñòðàòåãèéϕ, ψ è ñîîòâåòñòâóþùèõ ñòðàòåãèé p = P(ϕ), q = Q(ψ) ñïðàâåäëèâàôîðìóëàF1 (ϕ, ψ) =Zb Zd=F1 (x, y)dϕ(x)dψ(y) =am XnXpi F (xi , y j )qj = A(p, q).(3.4)i=1 j=1cÊðîìå òîãî, èñïîëüçóÿ (3.3), ïîëó÷èìZb Zd|F (ϕ, ψ) − F1 (ϕ, ψ)| = |(F (x, y) − F1 (x, y))dϕ(x)dψ(y)| ≤acZb Zd≤Zb Zd|F (x, y) − F1 (x, y)|dϕ(x)dψ(y) ≤acεdϕ(x)dψ(y) = ε.acÏîñëåäíåå íåðàâåíñòâî îçíà÷àåò, ÷òî äëÿ ôóíêöèé F (ϕ, ψ), F1 (ϕ, ψ) âûïîëíåíû óñëîâèÿ ëåììû 3.2.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее