Диссертация (Физические свойства многослойных композиционных материалов энергодвигательных установок космической техники и энергетики в условиях воздействия высоких термических и механических нагрузок), страница 4

PDF-файл Диссертация (Физические свойства многослойных композиционных материалов энергодвигательных установок космической техники и энергетики в условиях воздействия высоких термических и механических нагрузок), страница 4 Физико-математические науки (11139): Диссертация - Аспирантура и докторантураДиссертация (Физические свойства многослойных композиционных материалов энергодвигательных установок космической техники и энергетики в условиях возде2017-12-21СтудИзба

Описание файла

Файл "Диссертация" внутри архива находится в папке "Физические свойства многослойных композиционных материалов энергодвигательных установок космической техники и энергетики в условиях воздействия высоких термических и механических нагрузок". PDF-файл из архива "Физические свойства многослойных композиционных материалов энергодвигательных установок космической техники и энергетики в условиях воздействия высоких термических и механических нагрузок", который расположен в категории "". Всё это находится в предмете "физико-математические науки" из Аспирантура и докторантура, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "диссертации и авторефераты" в общих файлах, а ещё этот архив представляет собой кандидатскую диссертацию, поэтому ещё представлен в разделе всех диссертаций на соискание учёной степени кандидата физико-математических наук.

Просмотр PDF-файла онлайн

Текст 4 страницы из PDF

(Продолжение)СистемаZrO2 −NiZrO2 −Zr, ℃1 410 ÷ 1 6001 600 ÷ 1 800—СредаГелийНейтр.—1 8001 900Нейтр.Вакуум2 2002 2002 3001 6001 800 ÷ 2 100ВакуумВакуумВакуум—Вакуум————1 6001 900ВакуумВакуум2 000> 2 0001 900 ÷ 2 1002 525ВакуумВакуумВакуумНейтр.——2 350Вакуум——HfO2 −NbHfO2 −TaHfO2 −V——HfO2 −WHfO2 −Re2 350ВакуумZrO2 −MoZrO2 −TaZrO2 −TaZrO2 −NbZrO2 −VZrO2 −W(ZrO2 +9 %Y2 O3 )−W(ZrO2 +10 %Y2 O3 )−W(ZrO2 + Y2 O3 )−(60 %Mo + 40 %Re)(HfO2 +10 мол.

%Y2 O3 )−TaХарактер взаимодействияНе взаимодействуютНе взаимодействуютВзаимодействия и твердых раство­ров нет. В расплавах капли Mo распо­лагаются в матрице ZrO2 (Рис. 1.2, д )Не взаимодействуютНачало взаимодействия, образуютсяоксиды Mo и поры в металлеЛегкое прилипание фазВзаимодействия нетРазложение ZrO2Начало взаимодействияВзаимодействуют с образованием но­вой фазыФазы находятся в термодинамиче­ском равновесии при высоких темпе­ратурах и образуют простые квазиби­нарные твердые растворыОбразуют простую эвтектику при13 вес. % W.

Химического взаимодей­ствия нет, присутствуют только двефазы: ZrO2 и W.W не взаимодействует с Zr — возмож­ным продуктом диссоциации ZrO2(Рис. 1.2, е)Появляется желтый налетВзаимодействуют с образованием ок­сидов и пор в металлеМалые измененияЗаметное разложение оксидаОбразуется пористая структураПри взаимодействии происходит сла­бое изменение окраскиВзаимодействия и дестабилизациинет (температура плавления образ­цов с 10 % W 2 470 ℃)При взаимодействии происходит сла­бое изменение окраскиХимического взаимодействия нет.Образуется твердый раствор; имеет­ся эвтектика при 20 вес. % TaУказанные фазы находятся в термо­динамическом равновесии между со­бой при высоких температурах и об­разуют простые квазибинарные твер­дые растворыСлабое изменение окраскиЛит.[21][21][24][27][21][21][27][21][21][25,31][24,25,32][21][21][27][27][27][21][21][21][22][25,31][21,33]23Таблица 2.

(Продолжение)СистемаThO2 −Ti, ℃1 800ThO2 −Nb1 6001 800ThO2 −Mo2 1001 8001 900 ÷ 2 300ThO2 −TaThO2 −W—1 9002 2002 200 ÷ 2 3002 300UO2 −Nb2 500UO2 −Mo2 620UO2 −Ta1 9302 150UO2 −W1 930 ÷ 2 760MgO−HfCMgO−TaCZrO2 −HfCZrO2 −TaC2 0002 200 ÷ 2 3002 000 ÷ 2 3002 300ThO2 −HfC1 930 ÷ 2 760Y2 O3 −TaY2 O3 −CrY2 O3 −W—1 100СредаВакуумХарактер взаимодействияТитан проникает по границам зерен,новой фазы не обнаруженоНейтр.

Взаимодействуют слабоТо же Ниобий проникает по границам зе­рен, происходит коррозия оксислаВакуум Не взаимодействуютНейтр. Не взаимодействуютВакуум Взаимодействуют слабо с образова­нием налетов, происходит прилипа­ние образцов—Химическое взаимодействие термоди­намически не осуществимоВакуум Начало взаимодействияВакуум НезначительноевосстановлениеThO2Вакуум Взаимодействуют слабо с восстанов­лением ThO2То же Происходит сильное прилипание об­разцовВакуум, Не взаимодействуютНейтр.Вакуум Не взаимодействуютНейтр.Вакуум Не взаимодействуютНейтрВакуум Взаимодействуютсобразовани­ем темно-серой фазы из оксидовтантала,улетучивующихсяпридлительном нагревеВакуум Не взаимодействуютНейтрВакуум Не взаимодействуютВакуум Не взаимодействуютВакуум Не взаимодействуют—Взаимодействуют с образованием но­вой фазыВакуум Не взаимодействуютНейтр.—Не взаимодействуют—Начало взаимодействия1 400—2 100—Взаимодействие полностью заверша­ется с образованием YCrO3При горячем прессовании образова­ния новых фаз не обнаруженоЛит.[21][21][21][22][21][21][21][21][21][21][21][21][21][21][21][22][34,35][36][30,34,36]24В Таблице 3 даны ориентировочные величины максимальной допусти­мой рабочей температуры для оксидов, контактирующих с металлами и уг­леродом в течение 10 ÷ 100 ч [37, 38].Допустимая рабочая температура для оксидов, ℃Таблица 3.Al2 O3BeOHfO2MgOSiO2ThO2TiO2Y2 O3Cr2 O3ZrO2MgO · Al2 O3W1 9802 1002 0901 9801 5902 2901 8201 9801 8201 9001 980Mo1 8901 9002 1501 8201 4802 2001 8201 9801 8202 0901 980Ta1 5901 5901 9001 8201 4802 2001 7601 9001 5901 9001 950Nb1 8201 5901 5901 760—1 7601 4801 7001 7001 5901 700Cr1 3001 9001 9001 9001 4801 900—1 9001 5401 9001 900V1 7001 7001 7001 7001 4801 700—1 7001 5901 7001 700Ni1 5901 5901 700——1 7001 590——1 7001 590C1 6501 9801 9801 6501 4801 5901 4801 980—1 9801 590В работах [38, 39] приведены сравнительные оценки степени взаимодей­ствия материалов в инертной атмосфере при 1 800 ℃ (Таблица 4).

МеталлыMo, Ni с указанными в Таблице 4 оксидами не взаимодействуют.Таблица 4.Степень взаимодействия оксидов в инертной атмосфере при 1 800 ℃.Принятые обозначения: — отсутствие физического изменения на границеметалл-керамика; — разъедание по границам зерен и превращениеоксидной фазы; — незначительное корродирование оксида; ′ —значительное корродирование оксида; — образование новой фазы награнице металл-оксидОксидМеталлNbTiZrAl2 O3BeO ′′—ThO2′′ZrO2 SiTiO2Be′MgO′′25(а). Диаграмма состояниясистемы Cr2 O3 −Cr(б ). Диаграммасостояния системыCr2 O3 −Mo(в). Диаграмма состояния (г). Диаграмма состояниясистемы Cr2 O3 −Wсистемы Al2 O3 −Mo(д ).

Диаграммасостояния системыZrO2 −Mo(е). Диаграмма состояниясистемы ZrO2 −WРис. 1.2.Диаграммы состояния некоторых систем26Анализ и систематизация данных о физико-химическом взаимодействииразличных металл-керамических систем, приведенных в Таблицах 2–4, с уче­том требований к разрабатываемому материалу (Таблица 1) и сформулиро­ванных выше правил отбора фаз композита позволили ограничить ряд подхо­дящих металл-керамических систем, которые характеризуются малой разни­цей КТЛР, хорошей физико-химической совместимостью составляющих ком­понентов, достаточной стойкостью к окислению и способностью сохранятьсвои эксплуатационные показатели в рабочем температурном диапазоне. К ихчислу относится металл-керамическая система Al2 O3 −Cr, которая рассматри­вается в рамках настоящей работы.1.3.

Способы изготовления многослойных композитовметалл-оксидМетоды изготовления многослойных композитов, содержащих чередую­щиеся или иным образом расположенные слои металла и керамики посто­янного или ступенчато изменяющегося состава, весьма многочисленны. Ихможно разделить на следующие группы:1) прессование и спекание насыпных порошковых слоев;2) формование и спекание порошковых пленок;3) термокомпрессионная сварка металлических фольг и оксидных пла­стин;4) нанесение оксида на металлические ленты;5) направленная кристаллизация эвтектик.1.3.1.

Прессование и спекание насыпных порошковых слоевМногослойные композиты этого типа могут быть образованы из череду­ющихся слоев металла и оксида, образующих квазиоднородную двухфазнуюсистему, или с переменным, например, ступенчато изменяющимся составом27слоев, а также с различной их структурой. Способы обычного прессования испекания заготовок многослойных металлокерамических изделий из порош­ков с дозированной засыпкой порошка в полость матрицы, подпрессовкойкаждой из доз и последующим изостатическим холодным или горячим прес­сованием всего изделия наиболее распространены в технологии композитов[40].Описан способ получения композита, состоящего из плотно соединенныхслоев SiC и 3 Al2 O3 · 2 SiO2 (муллит) и предназначенного для изготовлениязащитных трубок для термопар с высокой прочностью и термостойкостью[41]. Композит получают прессованием порошковых смесей муллита и SiC сдобавлением связки из 5 ÷ 30 вес.

% кремнийорганической смолы, с последу­ющим обжигом композита при 1 000 ÷ 1 600 ℃ в неокислительной атмосфере.Материал обладает электропроводностью слоя SiC и электроизоляционнымисвойствами муллита.Разновидностью является способ, при котором с целью снижения дефор­мации при термообработке и увеличения прочности диффузионного соедине­ния слоев после холодного прессования металлического порошкового слоя егоподвергают горячему прессованию до плотности 91 ÷ 98 % от теоретическойи шлифуют, после чего засыпают керамическим порошком.Способ горячего прессования имеет ряд преимуществ перед обычнымпроцессом спекания:– температура спекания на 100 ℃ ниже;– длительность спекания меньше почти в 10 раз;– плотность может составить 99 % от теоретической.Этот способ был применен для изготовления слоистых керамо-металлических композиций в МХТИ им.

Д.И. Менделеева: были получены керметыY2 O3 −W и Y2 O3 −Cr дисперсной и слоистой структуры при содержании ме­талла 25 ÷ 30 об. % [42].Исследование показало (Таблица 5) превосходство прочностных свойств28слоистых керметов перед дисперсными, что является результатом повышенияпластичности и более вязкого характера разрушения. Эти свойства крайненизки у чистой керамики и керметов с дисперсной структурой (при содер­жании металла менее 35 об. %), для которых особую опасность представляютударные механические и термические нагрузки.

Высокая прочность керметасо слоистой структурой по сравнению с прочностью кермета с дисперснойструктурой объясняется тем, что:– при разрушении слои металла препятствуют распространению трещинв сравнительно хрупкой керамической матрице;– при появлении на пути трещины металлического слоя изменяется дли­на трещины.Указанные факторы препятствует разрушению образца.Таблица 5.Сравнение свойств керметов Y2 O3 −Cr и Y2 O3 −W со слоистой и дисперснойструктурами. Принятые обозначения: Π и — кажущиеся пористость иплотность соответственно; B и c — прочность при растяжении и сжатиисоответственно; — ударная вязкость; — коэффициент теплопроводности; — удельное электрическое сопротивлениеΠ,,B ,c , · 102 ,, · 104 ,%г/см3МПаМПакДж/м2Вт/(м · К)Ом · мY2 O3 −Cr(дисперсный)1,55,670 ÷ 100401÷25,86Y2 O3 −Cr(слоистый)0,15,7150 ÷ 2001205÷612,82Y2 O3 −W(дисперсный)7,57,8120 ÷ 170902÷313,99Y2 O3 −W(слоистый)2,68,2190 ÷ 2301506÷817,45МатериалКерметы со слоистой структурой имеют также более высокую тепло­проводность и более низкие значения удельного электросопротивления, чемкерметы с дисперсной структурой, что объясняется наличием непрерывнойметаллической сетки, образованной прослойками (свойства вдоль слоев).Такая особенность свойственна, разумеется, лишь керметам, которые со­29стоят из хаотично направленных пачек слоистого строения (Рис.

1.3) [43].Керметы со слоистыми пачками получают гидростатическим прессованиемпри комнатной температуре и удельном давлении 200 МПа с последующимгорячим прессованием в графитовых пресс-формах при температуре спека­ния 1 100÷1 400 ℃ и давлении 8÷30 МПа. В результате горячего прессованиябыли получены слои Y2 O3 толщиной 26÷32 мкм (исходная толщина 100 мкм)и слои Cr толщиной около 10 мкм (исходная толщина 40 мкм).Рис. 1.3.Микроструктура кермета Y2 O3 −Cr слоистого строенияСпособ спекания под давлением был применен для изготовления сло­истого кермета Al2 O3 −Nb, отличающегося высокими теплопроводностью итермостойкостью [44].

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее