151324 (Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты), страница 12

2016-07-30СтудИзба

Описание файла

Документ из архива "Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151324"

Текст 12 страницы из документа "151324"

Введённое среднеинтегральное граничное условие для первого коэффициента разложения позволило получить точное в среднем асимптотическое решение задачи, для которого в пористом пласте значение остаточного члена усреднённой задачи равно нулю.

На основании расчетов показано, что в большинстве практических случаев влиянием радиоактивного распада в окружающих пластах на плотность радиоактивных примесей в пласте и инициируемым этим распадом тепловым эффектом можно пренебречь. В то же время вклад диффузионных процессов обмена с окружающими пластами является преобладающим на диффузионном фронте, что объясняется большими градиентами концентрации и значительными временами закачки.

Показано, что для относительно малых времен при практических расчетах с высокой точностью может быть использовано так называемое «бездиффузионное» приближение, при построении которого вклад конвекции предполагается преобладающим. Произведена оценка погрешности бездиффузионного приближения, позволяющего значительно упростить выполняемые расчёты.

Сопоставление теории и эксперимента позволило подтвердить удовлетворительную точность при применении расчётных формул, полученных по методу пространственного усреднения на основе формального параметра, для практических расчётов.

Построено стационарное решение для массопереносной задачи, позволяющее установить предельные размеры зоны заражения при закачке радиоактивных отходов в глубокозалегающие горизонты.

Полученные выражения позволяют приступить к решению приоритетной для нас задачи теплопереноса, что и сделано в главе III.


Глава III. РЕШЕНИЕ ЗАДАЧИ ТЕПЛОПЕРЕНОСА В НУЛЕВОМ И ПЕРВОМ ПРИБЛИЖЕНИЯХ

3.1. Нулевое приближение

Постановка задачи теплопереноса для нулевого приближения представлена в разделе 1.4 в виде (1.4.44) – (1.4.50). Учитывая, обоснованную в 2.1 возможность пренебрежения радиоактивным распадом в «кровле» и «подошве», в пространстве преобразований Лапласа – Карсона по времени t задача представляется как

(3.1.1)

,

(3.1.2)

,

(3.1.3)

условия сопряжения, граничные и начальные условия

,

(3.1.4)

,

(3.1.5)

, , .

(3.1.6)

Последнее слагаемое в правой части уравнения (3.1.1) содержит сомножитель, определяемый плотностью радиоактивного загрязнителя, нахождение которой описано в главе II. В разделе 1.5.5 показано, что интеграл совпадает с нулевым приближением плотности и не зависит от . Поэтому уравнение (3.1.1) можно переписать следующим образом

(3.1.7)

Решение уравнения (3.1.2), с учётом граничных условий (3.1.6):

.

(3.1.8)

Аналогично, для подстилающего пласта в пространстве изображений

.

(3.1.9)

Учитывая условия сопряжения (3.1.4), эти решения можно переписать в виде

,

(3.1.10)

.

(3.1.11)

С помощью (3.1.10) и (3.1.11) выразим значения следов производных из внешних областей через температуру пласта в нулевом приближении

, .

(3.1.12)

Подставляя найденные значения производных (3.1.12) в уравнение (3.1.7), получим обыкновенное дифференциальное уравнение для определения температурного поля в пласте в нулевом приближении

.

(3.1.13)

Введём обозначение для выражения, стоящего в квадратных скобках

,

(3.1.14)

тогда

.

(3.1.15)

Решение однородного уравнения, соответствующего (3.1.15) имеет вид

.

(3.1.16)

Методом вариации произвольной постоянной определим .

.

(3.1.17)

Для нахождения постоянной подставим (3.1.17) в (3.1.16) и учтём граничное условие (3.1.5), тогда

.

(3.1.18)

Выражение для имеет вид

,

(3.1.19)

а решение задачи в пласте в пространстве изображений представляется в форме

.

(3.1.20)

С учётом (3.1.10), (3.1.11) температурное поле в окружающей среде описывается выражениями ( в пространстве изображений)

(3.1.21)

.

(3.1.22)

Для удобства перехода в пространство оригиналов перепишем (3.1.20) – (3.1.22) в виде

(3.1.23)

(3.1.24)

(3.1.25)

Перейдем в пространство оригиналов, используя формулы обратного преобразования Лапласа – Карсона [23]

,

где единичная функция Хевисайда

(3.1.26)

,

(3.1.27)

В нашем случае имеем

,

(3.1.28)

где

,

(3.1.29)

,

(3.1.30)

Для случая стационарного поля примесей совершив обратное преобразование Лапласа – Карсона, и перейдя в пространство оригиналов, решение задачи в нулевом приближении представим в виде

(3.1.31)

(3.1.32)

(3.1.33)

При этом радиус зоны термического влияния закачиваемой жидкости

RT =h = .

(3.1.34)

Для случая, когда плотность источников загрязнения нестационарна, наряду с указанными выше соотношениями необходимо использовать следующие:

,

(3.1.35)

,

(3.1.36)

поскольку подынтегральное выражение в этом случае может быть представлено в виде

.

(3.1.37)

Осуществив переход в пространство оригиналов в (3.1.37), получим

.

(3.1.38)

Для пласта

(3.1.39)

для кровли (3.1.40) и подошвы (3.1.41)

(3.1.40)

(3.1.41)

При пренебрежении радиоактивным распадом At = 0, полученные решения совпадают с известными для температурного поля при закачке холодной или горячей воды в пласт [30]

(3.1.42)

(3.1.43)

(3.1.44)

Если пренебречь влиянием теплообмена с окружающей средой на температуру в пласте, то вместо (3.1.42) – (3.1.44) получим квазиадиабатическое приближение

(3.1.45)

(3.1.46)

(3.1.47)

Для малых времен применимо адиабатическое приближение

(3.1.48)

(3.1.49)

3.2. Переход в пространство оригиналов для нулевого представления плотности загрязнителя

В данном пункте осуществлён переход в пространство оригиналов для случая , когда выражение для плотности в (3.1.23) – (3.1.25) представлено зависимостью (2.1.47)

(3.2.1)

(3.2.2)

(3.2.3)

Воспользовавшись приведенными выше соотношениями (3.1.26) – (3.1.28), получим следующие выражения для температурного поля в нулевом приближении:

(3.2.4)

(3.2.5)

(3.2.6)

Таким образом, нами получены выражения (3.2.4) – (3.2.6), определяющие в нулевом приближении температурное поле в пористом пласте и окружающих его породах.

3.3. Анализ результатов расчетов по нулевому приближению

На рис.3.1 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от времени для безразмерного расстояния r=20 (что соответствует размерному расстоянию 200 м) от оси скважины. Период полураспада изотопа полагается  30 лет. При расчётах считается, что объёмы закачки составляют 100 м3/сут. Графики построены для загрязнителя с различной активностью: 1  0.1 Ки/л, 2  0.05 Ки/л, 3  0.01 Ки/л, 4  0 Ки/л. С увеличением времени температура возрастает. Величина температуры в данной точке в каждый фиксированный момент времени тем выше, чем больше активность препарата, причём для высокоактивных загрязнителей рост температуры в основном определяется энергией, выделяющейся при радиоактивном распаде.

Рис 3.1. Зависимость в нулевом приближении температуры в пористом пласте от времени при фиксированной точке наблюдения r=20. Графики построены для различных значений активностей раствора (Ки/л): 1  0.1, 2  0.05, 3  0.01, 4  0. Другие расчётные параметры , , Кг=40, At =0.3, Pt = 102

На рис.3.2 показаны расчёты зависимости в нулевом приближении температуры в несущем пласте от расстояния до оси скважины для момента времени t = 0.3, что соответствует размерному времени 1 года. Период полураспада Т1/2 = 30 лет. Из анализа кривых следует, что при различных значениях активности загрязнителя 1 0.5 Ки/л,  0.3 Ки/л, 3 0.1 Ки/л на некотором расстоянии от скважины наблюдается значительный рост температуры пласта по сравнению температурой, определяемой теплофизическими свойствами закачиваемой жидкости без загрязнителя – 4 . Причём этот рост тем более значим, чем больше активность нуклида.

Рис 3.2. Зависимость в нулевом приближении температуры в пористом пласте от расстояния до оси скважины для момента времени t=0.3. Графики построены для постоянной распада At =0.3 и для различных значений : 1   = 50, 2  30, 3  10, 4 – 0. Другие расчётные параметры , , , , Кг = 20, m = 0.4, Pt = 102

На рис. 3.3 показаны расчёты зависимости в нулевом приближении температуры от вертикальной координаты для безразмерного времени t = 10, что соответствует размерному времени 30 лет. Период полураспада Т1/2 = 30 лет. Графики построены для загрязнителя, активность которого 0.1 Ки/л на различных расстояниях от оси скважины 1 – 0, 2 – h, 3 – 5h, 4 – 10h, 5 – 20h, 6 – 30h, 7 – 40h. Максимальное значение температуры достигается примерно на расстоянии 10h от оси скважины. Для выбранного временного промежутка возмущение температурного поля в вертикальном направлении на расстоянии большем 10h являются несущественными.

Рис. 3.3. Зависимость нулевого приближения температуры от вертикальной координаты, для момента времени t = 10. Графики построены для постоянной распада At = 0.3 и для различных значений r: 1  = 0, 2  1, 3  5, 4 – 10, 5 – 20, 6 – 30, 7 – 40. Другие расчётные параметры , , , , Кг = 20, m = 0.4, Pt = 102

3.4. Решение задачи теплообмена в пространстве изображений
в первом приближении

Постановка первого приближения задачи теплообмена была осуществлена в 1.4.4. Выпишем полученные там уравнения ещё раз, переобозначив их для удобства.

,

(3.4.1)

,

(3.4.2)

.

(3.4.3)

Граничные условия и условия сопряжения

, ,

(3.4.4)

, ,

(3.4.5)

,

(3.4.6)

,

(3.4.7)

, , .

(3.4.8)

Решение отыскивается в виде квадратного многочлена относительно z

,

(3.4.9)

причём

,

(3.4.10)

,

(3.4.11)

а значение нам ещё предстоит найти.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее