151324 (Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты)

2016-07-30СтудИзба

Описание файла

Документ из архива "Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151324"

Текст из документа "151324"

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

Стерлитамакская государственная педагогическая академия

на правах рукописи

МИХАЙЛИЧЕНКО ИГОРЬ НИКОЛАЕВИЧ

МОДЕЛИРОВАНИЕ ПРОЦЕСОВ

ТЕПЛО- И МАССОПЕРЕНОСА

ПРИ ЗАКАЧКЕ РАДИОАКТИВНЫХ РАСТВОРОВ

В ГЛУБОКОЗАЛЕГАЮЩИЕ ПЛАСТЫ

Диссертация

на соискание ученой степени

кандидата физико-математических наук

05.13.18 – математическое моделирование, численные методы

и комплексы программ

Научные руководители –

доктор технических наук,

профессор Филиппов А.И.;

кандидат

физико-математических наук,

доцент Михайлов П.Н.

Стерлитамак 2006

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ 4

СПИСОК ОБОЗНАЧЕНИЙ 12

Глава I. ПОСТАНОВКА ЗАДАЧИ ТЕПЛО- И МАССОПЕРЕНОСА ПРИ ФИЛЬТРАЦИИ ЖИДКОСТИ С РАДИОАКТИВНЫМ ЗАГРЯЗНИТЕЛЕМ В ГЛУБОКО ЗАЛЕГАЮЩИХ ПЛАСТАХ 14

1.1. Некоторые аспекты развития методов расчётов температурных и концентрационных полей в пластах 14

1.2. Основные физические процессы при фильтрации жидкости в глубоко залегающих пластах 16

1.3. Уравнение конвективной диффузии с учетом радиоактивного распада и обмена жидкости со скелетом 17

1.4. Задача теплопереноса 20

1.4.1.Математическая постановка задачи теплопереноса и её обезразмеривание 20

1.4.1. Разложение задачи теплопереноса по асимптотическому параметру 26

1.4.3. Математическая постановка задачи теплопереноса в нулевом приближении 28

1.4.4. Постановка задачи теплопереноса в первом приближении 31

1.5. Задача массопереноса 32

1.5.1. Математическая постановка задачи массопереноса и её обезразмеривание 32

1.5.2.Разложение задачи массопереноса по асимптотическому параметру 36

1.5.3. Математическая постановка задачи массопереноса в нулевом приближении 38

1.5.4. Математическая постановка задачи массообмена в первом приближении 41

1.5.5. Дополнительное интегральное условие для первого приближения 45

1.6. Выводы 48

Глава II. РЕШЕНИЕ ЗАДАЧИ МАССОПЕРЕНОСА В НУЛЕВОМ И ПЕРВОМ ПРИБЛИЖЕНИЯХ, СТАЦИОНАРНОЕ РЕШЕНИЕ 50

2.1 Решение задачи массопереноса в нулевом приближении 50

2.2. Анализ результатов расчетов в нулевом приближении 63

2.3. Бездиффузионное приближение в задаче массообмена 66

2.4. Решение задачи массообмена в первом приближении 70

2.5. Анализ результатов расчетов в первом приближении 77

2.6. Стационарное решение задачи массопереноса в нулевом и первом приближении 87

2.7. Анализ результатов расчёта стационарной задачи 96

2.8. Выводы 100

Глава III. РЕШЕНИЕ ЗАДАЧИ ТЕПЛОПЕРЕНОСА В НУЛЕВОМ И ПЕРВОМ ПРИБЛИЖЕНИЯХ 102

3.1. Нулевое приближение 102

3.2. Переход в пространство оригиналов для нулевого представления плотности загрязнителя 111

3.3. Анализ результатов расчетов по нулевому приближению 114

3.4. Решение задачи теплообмена в пространстве изображений
в первом приближении 116

3.5. Сопоставление радиусов зон химического и теплового возмущений 122

3.6. Выводы 129

ЗАКЛЮЧЕНИЕ 130

ЛИТЕРАТУРА 132

ВВЕДЕНИЕ

Актуальность проблемы. В настоящее время наиболее распространённым видом утилизации радиоактивных отходов предприятий атомной промышленности и химических производств является закачка их в виде жидких растворов в глубокозалегающие подземные пласты. Поэтому чрезвычайно важной экологической задачей является прогнозирование и контроль поведения зон, охваченных воздействием вредных примесей, особенно с учётом того, что глубокозалегающие пласты обычно имеют выходы на поверхность. Указанный прогноз осуществляется, в основном, расчётным путём, так как возможности экспериментального определения размеров глубоко залегающих зон загрязнения весьма ограничены.

При закачке вредных примесей нарушается естественное температурное поле, что определяется как отличием температуры закачиваемой жидкости от пластовой, так и выделением тепла за счет радиоактивного распада и химических реакций. При этом поля концентраций примесей и температуры являются взаимосвязанными, поэтому на основе измерений температуры в контрольных скважинах, проведённых в зоне влияния закачки отходов, можно создать методы контроля за зоной заражения.

Вопросы захоронения радиоактивных отходов в геологических формациях и возникающие при этом экологические проблемы подробно рассматривались многими исследователями, среди которых можно выделить Белицкого А.С., Орлову Е.И. [5], Рыбальченко, А.И., Пименова М.К. [64]. Исследованию полей концентрации радиоактивного загрязнителя в пористых пластах посвящено большое число работ Ф.М. Бочевера, Н.Н. Веригина, В.М. Гольдберга.

Результаты исследования температурных полей представлены в статьях и монографиях научных школ Башкирского, Казанского, Латвийского госуниверситетов, научно-исследовательских и проектных институтов нефтегазовой промышленности, а также зарубежных ученых. В подавляющем большинстве в этих работах в основу исследований положена “схема сосредоточенной ёмкости”, которая предполагает, что поле температуры в интервале пласта не зависит от вертикальной координаты. Однако в последние годы, в связи с повышением разрешающей способности термометрической аппаратуры, встал вопрос о методах расчётов температуры с учётом зависимости от вертикальной координаты.

Расчёт пространственно-временных распределений концентрации вредных примесей в глубоко залегающих пластах сводится к решению краевых задач конвективной диффузии в пористых средах. Соответствующие задачи обладают большим разнообразием, и решение их зачастую сопряжено со значительными трудностями. В настоящее время новые перспективы в исследовании динамики полей температур открывает использование модификации асимптотических методов, ориентированной на задачи скважинной термодинамики (А.И. Филиппов). Она была использована для создания теории температурных и массообменных процессов при закачке жидкости в пласты (О.И. Коркешко) и баротермического эффекта (Н.П. Миколайчук), при моделировании фильтрации газожидкостных смесей и аномальной жидкости (Е.М Девяткин, Г.Я. Хусаинова), движения жидкости по скважине (П.Н. Михайлов, О.В. Ахметова), термического воздействия на пласт на основе фильтрационно-волновых процессов (М.Р. Минлибаев, Г.Ф. Ефимова).

Целью диссертационной работы является разработка методов расчёта полей температур и концентраций радиоактивных примесей при закачке растворов, содержащих радиоактивный загрязнитель, в глубоко залегающие проницаемые пласты на основе асимптотических разложений.

Основные задачи исследования:

  • анализ вклада основных физических процессов, обуславливающих динамику распространения радиоактивных примесей и температурных полей, постановка соответствующих математических задач;

  • применение асимптотического метода к многослойным задачам, построение задач для коэффициентов разложения искомого решения в виде ряда по параметру;

  • получение аналитических решений задач для коэффициентов разложения нулевого и первого порядков;

  • проведение расчетов пространственно-временных распределений полей концентраций загрязнителя и температуры и изучение влияния различных физических параметров на эти распределения;

  • сопоставление полученных результатов с экспериментальными данными и результатами других исследователей.

Научная новизна:

  • С помощью модификации асимптотического метода получены новые приближённые решения задач, описывающих динамику температурных полей и распространения радиоактивных примесей в проницаемых пластах с учетом их распада и осаждения на скелет.

  • Найдено стационарное решение задачи о распространении плотности радиоактивного загрязнителя, установлена область применимости задачи в бездиффузионном приближении для расчетов полей в реальных условиях.

  • Получено соотношение между размерами зон очищенной воды, загрязненной радиоактивными примесями и температурных возмущений. Установлено, что при больших коэффициентах Генри размеры последней во много раз превосходят размеры зоны загрязнения и поэтому регистрация температурных полей может быть использована для прогнозирования положения зоны радиоактивного заражения.

Практическая значимость. На основе полученных решений созданы новые способы расчётов экологической безопасности природных глубоко залегающих объектов, используемых для захоронения радиоактивных отходов АЭС и промышленных предприятий. Определена зависимость величины и положения максимума температурного поля от параметров закачки, энергетической активности загрязнителя и теплофизических свойств пластов, что очень важно для предотвращения неблагоприятных последствий, в частности, «теплового взрыва».

Достоверность полученных результатов обоснована тем, что в основу исследований положены уравнения, выведенные из фундаментальных законов сохранения. Полученные решения в частных случаях сопоставлены с результатами других исследователей, а также удовлетворительно согласуются с результатами экспериментальных исследований, опубликованными в печати.

Основные положения, выносимые на защиту:

  1. Построенная с использованием модификации асимптотического метода математическая модель температурного поля жидкости с радиоактивным загрязнителем, текущей по проводящему пласту, окружённому «кровлей» и «подошвой», в нулевом и первом приближениях. Обоснование утверждения, заключающегося в том, что дополнительное нелокальное интегральное условие приводит к построению в «среднем точного» асимптотического решения.

  2. Аналитические выражения для расчётов полей температуры и концентрации вредных примесей при их закачке в подземные пласты, представленные в виде разложения по параметру асимптотического разложения для задач массо- и теплопроводности, содержащие слагаемые нулевого и первого порядков.

  3. Результаты расчётов пространственно-временных распределений плотности и температуры загрязнителя (в частности, с помощью стационарного решения), которые показывают, что при отсутствии в пористом пласте естественной миграции жидкости имеются предельные размеры зоны загрязнения, определяемые периодом полураспада нуклида и темпами закачки; аналитические зависимости для размеров зон радиоактивного заражения, термического влияния и очищенной воды.

Краткая характеристика содержания работы. Работа состоит из введения, трех глав, заключения и списка используемой литературы.

Во введении обоснована актуальность проблемы, сформулированы цель и задачи диссертационной работы, обоснованы научная новизна и практическая значимость результатов исследования.

В первой главе приведен краткий обзор литературы. Произведено описание основных физических процессов, происходящих при фильтрации жидкостей в глубокозалегающих пластах, проведена оценка вкладов этих физических процессов, и на этой основе осуществлена постановка задачи о фильтрации жидкости с радиоактивными примесями в глубоко залегающих пластах.

Выписаны уравнения, определяющие изменение температурного поля. Произведено обезразмеривание задачи о распространении поля температур. Произведена оценка вклада радиальной температуропроводности в процессы теплопереноса, и сделан вывод о возможности пренебрежения соответствующими составляющими в уравнении теплопереноса. Введён параметр асимптотического разложения, определена математическая постановка задачи для нулевого и первого приближений. Сделан вывод о необходимости первоначального решения задачи, определяющей зависимость плотности загрязнителя от времени и координат.

Выписаны уравнения массопереноса для радиоактивного загрязнителя. Произведено их обезразмеривание. Обоснована возможность пренебрежения слагаемыми, определяющими радиальную диффузию (в сравнении с конвективным переносом загрязнителя). Произведено асимптотическое разложение массопереносной задачи. Записана математическая постановка задачи в нулевом и первом приближениях.

Во второй главе решена задача массопереноса в нулевом и первом приближениях. Обоснована возможность пренебрежения радиоактивным распадом в «кровле» и «подошве». Рассмотрено бездиффузионное приближение, оценены границы его применимости. Найдено стационарное решение, определены максимальные размеры зоны заражения. Обосновано введение среднеинтегрального условия для первого коэффициента разложения.

Третья глава посвящена решению задачи теплообмена в нулевом и первом приближении. При этом, как и во второй главе, использован метод интегральных преобразований Лапласа-Карсона. Построено решение в нулевом приближении, показано, что оно определяется только нулевым приближением поля загрязнителя. Проанализированы полученные решения. Для первого коэффициента разложения получено решение в пространстве изображений. Рассмотрены и сопоставлены радиусы зон химического и теплового влияния, найдены соотношения, определяющие относительные размеры этих зон. Построен алгоритм получения решения любого требуемого приближения.

В заключении подводены итоги проведенного исследования.

В процессе выполнения работы широко использованы асимптотические методы, методы интегральных преобразований Лапласа – Карсона. Численные расчеты тепловых полей осуществлены с помощью программного пакета MathCAD. Графические иллюстрации выполнены с использованием программы CorelDraw.

Публикации. Основные результаты диссертации опубликованы в 9 научных работах. Постановка задачи в работах принадлежит профессору Филиппову А.И. В остальном вклад авторов равный. Результаты, выносимые на защиту, принадлежат автору.

  1. Михайличенко, И.Н. и др. Поле концентрации при закачке водных растворов радиоактивных примесей в глубокозалегающие пласты / А.И. Филиппов, П.Н. Михайлов, И.Н. Михайличенко // Современные проблемы физики и математики. Труды Всероссийской научной конференции (16 – 18 сентября 2004 г., г. Стерлитамак). – Уфа: Гилем, 2004. С. 89 – 97.

  2. Михайличенко, И.Н. и др. Температурные поля при закачке водных растворов радиоактивных примесей в подземные горизонты / Филиппов А.И., Михайлов П.Н., Михайличенко И.Н. // Обозрение прикладной и промышленной математики / Тезисы докладов V Всероссийского симпозиума по прикладной и промышленной математике. – М., 2004. – Т. 11, – В.3. – С. 596 – 597.

  3. Михайличенко, И.Н. и др. Поле концентрации при закачке водных растворов радиоактивных примесей в глубокозалегающие пласты / А.И. Филиппов, П.Н. Михайлов, И.Н. Михайличенко // Обозрение прикладной и промышленной математики / Тезисы докладов V Всероссийского симпозиума по прикладной и промышленной математике. – М., 2004. – Т. 11, – В.3. – С. 595 – 596.

  4. Михайличенко, И.Н. и др. Оценка погрешности бездиффузионного приближения в задачах тепломассопереноса / А.И. Филиппов, П.Н. Михайлов, И.Н. Михайличенко // Математические модели в образовании, науке и промышленности: Сб. науч. трудов. – СПб.: Санкт-Петербургское отделение МАН ВШ, 2005. – С. 101 – 105.

  5. Михайличенко, И.Н. Способ расчёта концентрации загрязнителя при захоронении растворённых веществ / И.Н. Михайличенко // ЭВТ в обучении и моделировании. Труды IV Региональной научно – методической конференции. (16 – 17 декабря 2005 г., г. Бирск). – Бирск: изд-во БГСПА, 2005. – С. 294 – 303.

  6. Михайличенко, И.Н. и др. Определение зоны заражения при подземном захоронении растворённых радиоактивных веществ / А.И. Филиппов, П.Н. Михайлов, И.Н. Михайличенко // Вестник Херсонского национального технического университета. Вып. 2(25). – Херсон: ХНТУ, 2006. – С. 508 – 512.

  7. Михайличенко, И.Н. и др. Расчет полей концентрации при подземном захоронении растворенных радиоактивных веществ / А.И. Филиппов, П.Н. Михайлов, А.Г. Крупинов, И.Н. Михайличенко // Экологические системы и приборы. – 2006. – №5. – С. 27 – 35.

  8. Михайличенко, И.Н. Расчет полей концентрации при подземном захоронении растворенных радиоактивных веществ / Д.А. Гюнтер, И.Н. Михайличенко // Региональная школа – конференция молодых учёных: тезисы докладов. – Уфа: Гилем, 2006. – С. 44 – 45.

  9. Михайличенко, И.Н, Погранслойное решение в задаче о закачке радиоактивных примесей в пористый пласт/ Е.М. Девяткин, И.Н. Михайличенко // VI Региональная школа – конференция для студентов, аспирантов и молодых учёных по математике, физике и химии. Тезисы докладов. – Уфа: РИО БашГУ, 2006. – С. 141 – 142.


СПИСОК ОБОЗНАЧЕНИЙ

a  – коэффициент температуропроводности, м2/с;

 – удельные теплоёмкости пластов, Дж/(кг·К);

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее