86422 (Кручение стержней), страница 4

2016-07-29СтудИзба

Описание файла

Документ из архива "Кручение стержней", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86422"

Текст 4 страницы из документа "86422"



Вычислим интеграл вдоль внутреннего контура:





Так как w является однозначной функцией, и интегрирование производится по замкнутому контуру, то первый интеграл обращается в нуль. В параграфе §1.3 уже было показано, что второй интеграл равен удвоенной площади, ограниченной контуром S2. Поэтому имеем:



(60)



где A2 - площадь, ограниченная контуром S2.

Вернемся теперь к мембранной аналогии. Если мембрану внутри контура S2 заменить невесомой плоской пластинкой (рис.13), то уравнение равновесия пластинки будет иметь вид:



(61)



где F - натяжение мембраны, z - прогиб. Пользуясь равенством





находим из уравнения (61)



или



что совпадает с выражением (60). Таким образом, в случае полого сечения надо считать, что мембрана натянута по внешнему контуру и связана с невесомой плоской пластинкой по внутреннему контуру.

На рис.13 точки В, В1 и С, С1 соответствует уровням внешнего и внутреннего контуров, а линии ВС и В’С’ представляют поперечное сечение мембраны, натянутая между двумя контурами. Если стенка тонкая, то линии ВС и В’С’ приближаются к прямым отрезкам; изменение уклона мембраны будет незначительно. Это равносильно предположению о постоянстве касательных напряжений по толщине стенки. Если через h обозначить постоянное значение функции на контуре S2, то из мембранной аналогии следует, что h равносильно разности уровней обоих контуров. Пусть t - переменная толщина стенки. Касательное напряжение в любой точке определяется уклоном мембраны и равно



(62)



Формула для постоянной кручения J (53) должна быть теперь изменена. При выводе уравнений (10) и (11) нормаль N принималось положительной, если она была направлена наружу по отношению к поперечному сечению. Для внутреннего контура надо пользоваться тем же правилом знаков, так что положительное направление будет внутрь. Следуя этому условию, придется при интегрировании вдоль S2 изменить знак перед линейными интегралами в уравнениях (10) и (11). На контуре S1 функция равна нулю, а на S2 будет =h. Поэтому формула (53) принимает вид:



(63)



индекс R соответствует площади А1, заключенной между контурами S1 и S2. Так как профиль является тонкостенным, величину во втором интеграле можно заменить средним её значением между S1 и S2, равным h/2. Поэтому получаем





где A - площадь, ограниченная средней линией профиля. Подставляя найденное значение J в уравнение (62), находим



(64)



Угол закручивания можно вычислить по формуле (60):



отсюда



(65)



рис.14



здесь S отсчитывается вдоль средней линии профиля. Уравнения (64) и (65) впервые были получены Бредтом и известны как формулы Бредта.

Если трубчатый профиль имеет более чем два контура (рис.14), то части мембраны, ограниченные внутренними контурами, снова могут быть заменены невесомыми плоскими пластинками. Предполагая, что толщина стенки мала, имеем:



(66)



где h1 и h2 - уровни внутренних контуров СС’ и DD’.Уравнение (63) запишется в виде



где A’i - площадь, заключенная внутри контура Si, а A1 и A2- площади, ограниченные линиями S1 и S2. Отсюда



(67)



Будем считать толщины постоянными. Через обозначим длины средних линий. Находя интеграл из уравнения (60) сначала по площади A1, а затем по A2, получаем



(68)



напряжения и угол можно вычислить, решая совместно уравнения (67) и (68).

Из уравнений (66) можно видеть, что для той или иной ветви поперечного сечения произведение является величиной постоянной. Если соединяются несколько элементов трубчатого сечения, как в точке Н, то имеем



(69)



Здесь может быть использована гидродинамическая аналогия, причем величина соответствует объему идеальной жидкости, циркулирующей по каналу; последний должен иметь ту же форму, что и трубчатый стержень. Тогда уравнение (69)означает, что объем втекающей жидкости должен быть равен объему вытекающей жидкости. Величина называется, поэтому потоком касательных усилий.

рис.15



Приведем численный пример определения касательных напряжений для тонкостенных профилей, в которых число контуров превышает три. На рис.15 показано поперечное сечение и нанесены его размеры. Пусть приложенный крутящий момент будет равен 115000 кг см. Вычисляем площади:





Примем, что касательные напряжения положительны по направлениям, указанным стрелками. Сопоставляя направления потоков касательных усилий, находим



. (70)



С другой стороны, имеем





Подставив численные значения, получим



или



(71)



По уравнению (60) будем иметь:



(72)



Длины контуров равны:





Используя уравнения (70), найдем:



(73)



Решая совместно уравнения (71) и (73), получим:





Знак минус перед напряжением означает, что оно направлено в сторону, противоположную указанной на рисунке.



§2.3 Кручение круглых валов переменного диаметра



рис.17



Рассмотрим кручение круглого вала переменного диаметра, изображенного на рис.17, парами, приложенными по торцам. Когда мы встречаемся с телами вращения, удобно пользоваться цилиндрическими координатами . Причем, что ось z совпадает с осью вала. Пренебрегая объемными силами, имеем:



(74)



Обозначим перемещения в направлениях соответственно через u, v, w. Выражения для компонентов деформации могут быть выведены таким же образом:



(75)



В параграфе §2.1 было найдено, что в случае закручивания сплошного круглого вала парами, приложенными по торцам, перемещения вдоль оси вала будут отсутствовать, и перемещение точек любого поперечного сечения происходит в направлении касательной. Попробуем решить настоящую задачу, полагая, что в данном случае



u=w=0.



Докажем, что решение, в основе которого лежит такое предположение, будет удовлетворять дифференциальным уравнениям и граничным условиям. Из теоремы об однозначности решения можно сделать вывод, что такое решение является правильным. Благодаря осевой симметрии, перемещение v не может зависеть от угла и будет функцией только r и z. Пользуясь этим, из (75) находим:



(76)



Из формул закона Гука легко получаем:



(77)

Заметим, что единственные компоненты напряжений и , отличные от нуля, не зависят от угла . Поэтому первые два уравнения (74) тождественно удовлетворяются, а третье уравнение принимает вид:





Его можно записать в следующей форме:



(78)



Это уравнение тождественно удовлетворяется, если ввести функцию напряжений по формулам:





Или



(79)



Чтобы определить функцию напряжений, надо обратиться к уравнению совместимости.

Решая совместно уравнения (77) и (79), находим:





Дифференцируя первое равенство по z, а второе – по r и вычитая одно из другого, получаем следующее уравнение совместимости:



(80)



Найдем теперь условие на контуре для функции . Так как боковая поверхность вала свободна от внешних нагрузок, то результирующее касательное напряжение должно быть направлено по касательной к контуру осевого сечения, а его проекция на нормаль N к контуру должна равняться нулю. В соответствии с этим имеем





С другой стороны,



cos(N^r)=dz/ds , cos(N^z)= - dr/ds,



где ds - элемент дуги контура. Подставляя сюда выражение (79), получаем





откуда





Или



на контуре



Таким образом, задача о кручении кругового вала переменного диаметра сводится к решению уравнения (80) при условии на контуре (81).

Величину крутящего момента легко вычислить, определив момент касательных усилий в поперечном сечении:



(82)



Если вал имеет коническую форму, как на рис.18, то на контуре имеет место зависимость





рис.18



причем отношение, фигурирующее в левой части равенства, является величиной постоянной. Поэтому любая функция этого отношения будет удовлетворять условию на контуре (18).

Легко проверить, что функция





где C - постоянная, удовлетворяет уравнению (80). Постоянную C можно определить, подставив эту функцию в уравнение (82); тогда получим



(83)



Таким образом, касательные напряжения и равны:



(84)



где C определяется по формуле (83).

Обычно задачи, с которыми приходится сталкиваться на практике, бывают более сложными. В таких случаях применяют численные методы решения.



ГЛАВА 3. КРУЧЕНИЕ ПРИЗМАТИЧЕСКИХ И ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ



Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее