86422 (Кручение стержней)

2016-07-29СтудИзба

Описание файла

Документ из архива "Кручение стержней", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86422"

Текст из документа "86422"

Кручение стержней

ОГЛАВЛЕНИЕ



Введение

Глава 1. Кручение стержней имеющих в сечении правильный многоугольник

§1.1 Кручение призматических стержней

§1.2 Кручение стержней прямоугольного сечения

§1.3 Мембранная аналогия

§1.4 Кручение тонкостенных стержней открытого профиля

Глава 2. Кручение стержней имеющих в сечении круг и эллипс

§2.1 Кручение стержней круглого и эллиптического сечений

§2.2 Кручение тонкостенных труб

§2.3 Кручение круглых валов переменного диаметра

Глава 3. Кручение призматических и цилиндрических стержней

§3.1 Чистое кручение стержней постоянного сечения

§3.2 Чистое кручение круглых стержней (валов) переменного сечения

Глава 4. Задачи

Заключение

Литература



ВВЕДЕНИЕ



Данная выпускная квалификационная работа состоит из четырех глав. В первой главе излагается прямой, обратный и полуобратный методы, применяемые при решении задач о кручении стержня прямоугольного сечения. Исследованы приближенные методы решения задач о кручении более сложных сечений.

Вторая глава посвящена изучению кручения стержней в сечении имеющих форму круга или эллипса. Применяют метод перехода к полярным координатам.

В третьей главе исследуется кручение призматических и цилиндрических стержней, исследуются общие построения данной теории и их различия.

В четвертой главе изучают теоретическое применение к решению задач.



Глава 1. КРУЧЕНИЕ СТЕРЖНЕЙ, ИМЕЮЩИХ В СЕЧЕНИИ ПРАВИЛЬНЫЙ МНОГОУГОЛЬНИК



§1.1 Кручение призматических стержней



Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений теории упругости совместно с заданными граничными условиями, не всегда возможен. Для многих задач удобно применять так называемые обратный и полуобратный методы. При пользовании обратным методом выясняют, каким граничным условиям соответствуют некоторые функции, удовлетворяющие дифференциальным уравнениям. Таким путем можно получить ряд полезных результатов. Полуобратный метод, впервые предложенный Сен-Венаном, состоит в том, что делают некоторые допущения в отношении напряжений или перемещений. При этом дифференциальные уравнения настолько упрощаются, что решение их не представляет особых математических трудностей. Принимая те или иные допущения, мы, как правило, ограничиваем общность полученного решения; но обычно их можно формулировать таким образом, чтобы все же получить решение частных задач. Например, в рассматриваемой ниже задаче о кручении призматического стержня мы будем задаваться определенными функциями для перемещений и, v, w, сводя, таким образом, основные уравнения к одному дифференциальному уравнению. Но при таких допущениях мы можем найти решение задачи о кручении стержней только постоянного сечения; решения же для стержней, не являющихся призматическими, получить этим путем нельзя. Полуобратный метод является одним из самых эффективных методов решения задач теории упругости.



рис. 1



Предположим, что один конец стержня призматического сечения, длины L, закреплен в плоскости ху, а на другой конец действует пара, вектор-момент который направлен вдоль оси z (рис. 1). Мы полагаем, что закрепленный конец не может вращаться, но что оба конца могут свободно перемещаться друг относительно друга в направлении z. Под действием пары стержень будет закручиваться, причем образующие цилиндра будут превращаться в винтовые линии. Угол поворота любого поперечного сечения зависит от расстояния, на котором находится это сечение от закрепленного конца. При малой деформации можно считать, что угол закручивания пропорционален расстоянию между сечением и закрепленным концом. Таким образом,



z, (1)



рис. 2

где угол закручивания на единицу длины. Будем считать угол закручивания малым. Рассмотрим сечение стержня, которое находится на расстоянии z от закрепленного конца. Точка Р с координатами x, y, z в результате деформации перемещается в точку Р’(x+u, y+v, z+w). На рисунке 2 показана точка Р’1, являющаяся проекцией Р’ на плоскость xy.

Предположим, что в плоскости xy точка Р перемещается в Р’1 при повороте на угол закручивания , причем ОР ОР’1= r. Если угол мал, то cos 1 и sin . Следовательно,





Подставляя значение (1), получаем



(2)



таким оказывается закон изменения u и v. В отношении w не будем пока делать никаких допущений, кроме того, что w зависит только от x и y и не зависит от z . Следовательно, можно записать



(3)



где - некоторая функция от x и y .Так как w определяет искажение (депланацию) торцевых сечений, то функцию можно назвать функцией депланацией. Необходимо выяснить, будут ли отвечать принятые выражения для перемещений, вместе с неизвестной еще функцией , напряженному состоянию, удовлетворяющему заданным граничным условиям. Эти условия в данном случае состоят в том, что на обоих торцах должны действовать, только крутящие моменты и что боковая поверхность стержня свободна от сил.

Пользуясь приведенными выше выражениями для перемещений, находим:



(4)



Из закона Гука следует:



(5)



Подставим эти значения в уравнения равновесия, которые будут выполняться, в случае, если функция удовлетворяет уравнению





для всех точек поперечного сечения R стержня, здесь





- оператор Лапласа.

Обратимся к граничным условиям. Так как





на боковой поверхности стержня, то уравнений примет следующий вид:



на контуре S,



где S - контурная линия поперечного сечения стержня.

Покажем, далее, что на двух других граничных поверхностях, а именно, на торцах стержня, определяемых плоскостями z=0 и z=L, напряжение (5) сводятся к скручивающей паре, и результирующие силы отсутствуют. Результирующая сила в направлении x равна



; (8)



это выражение можно привести к виду



. (9)



При получении уравнения (9) были использованы соотношения





рис. 3



здесь принято





в соответствии с уравнением (6).

Пусть f является некоторой функцией x и y; тогда можно выписать равенства (рис. 3):





где f1 и f2 - значение функции f на правой и левой частях контура. Выполним интегрирование по y для контурной кривой в границах от y=yA до y=yB. Если мы будем вести интегрирование функции f по контуру в направлении против часовой стрелки, то для правой части контура приращение dy - положительно, а для левой - отрицательно. В результате каждая из величин f1dy и (- f2dy) окажется положительной, и, следовательно,



. (10)



Аналогично,



(11)



Пользуясь формулами (10) и (11), придадим выражению (9) вид:



. (12)



Будем считать положительными направления вдоль нормали N во внешнюю сторону и вдоль контура – против часовой стрелки; тогда согласно рис.3,б получим



(13)



Равенство (12) принимает вид





при этом выражение





обращается в нуль на контуре S в соответствии с уравнением (7). Мы пришли, таким образом, к равенству





Таким же путем можно показать, что составляющая результирующей силы вдоль оси также равна нулю:





Следовательно, результирующие силы по торцам цилиндра обращаются в нуль.

Результирующий крутящий момент T по торцам стержня, отвечающий принятому распределению напряжений, равен:



(14)



Интеграл, фигурирующий в выражении (14), зависит от функции кручения и, следовательно, от вида поперечного сечения R стержня. Вводя обозначение



(15)



Получим



(16)



где J – постоянная кручения. Уравнение (16) показывает, что крутящий момент пропорционален углу закручивания на единицу длины, так что произведение является мерой жесткости стержня, подвергаемого кручению; величина эта называется крутильной жесткостью стержня.



§1.2 Кручение стержней прямоугольного сечения



Пусть поперечное сечение стержня представляет собой прямоугольник с центром в начале координат и со сторонами 2a и 2b, направленными параллельно координатным осям, как показано на рис.7. Пользуемся полученными ранее уравнениями: для всей прямоугольной области



рис.7



(6)



и по контору



(7)



На контурных линиях AB и CD, где x= a, будет l= 1 и m=0 , а на линиях BC и AD имеем l=0 и m= 1 . Условие на контуре (7) можно переписать в следующем виде:



(31)



Этим условиям можно придать более удобную форму, вводя новую функцию так, что



. (32)



Легко показать, что для новой функции основное уравнение по всей прямоугольной области будет иметь вид:



; (33)



условия на контуре будут следующими:



при (34)

при (35)



Примем решение уравнения (33) в виде бесконечного ряда



(36)



каждый член, которого удовлетворяет дифференциальному уравнению; здесь Xn(x) и Yn(y) – функции соответственно только x и y. Очевидно, если решение для нельзя выразить в форме ряда (36), то мы не сможем найти решение для функции Xn и Yn , удовлетворяющее граничным условиям.

Подставляя Xn(x), Yn(y) в уравнение (33) и обозначая производные штрихами, находим





Или





Так как левая часть полученного уравнения является функцией только от x, а правая зависит только от y, то уравнение может быть удовлетворено лишь в том случае, если обе его части равны постоянной величине; обозначим ее через ( ) (постоянную берем со знаком минус, так как иначе граничные условия не будут удовлетворяться). Таким образом, мы получаем два обыкновенных дифференциальных уравнения:



Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее