Билет №18 (Ответы на экзамен 2)

2013-09-12СтудИзба

Описание файла

Файл "Билет №18" внутри архива находится в папке "otvety_v2". Документ из архива "Ответы на экзамен 2", который расположен в категории "". Всё это находится в предмете "материалы и элементы электронной техники" из 5 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материалы и элементы электронный техники" в общих файлах.

Онлайн просмотр документа "Билет №18"

Текст из документа "Билет №18"

7


Билет №18

ПРОБОЙ ДИЭЛЕКТРИКОВ

5.1. ОПРЕДЕЛЕНИЯ И ОСНОВНЫЕ ПОНЯТИЯ

Пробоем диэлектрика называют такое его состояние, когда ди­электрик при некотором значении напряженности электрического поля утрачивает свои электроизоляционные свойства. В диэлектрике обра­зуется канал проводимости.

Следствием пробоя является возникновение тока короткого за­мыкания Iкз, который не зависит от природы диэлектрика и опреде­ляется лишь мощностью источника напряжения и сопротивлением внешней цепи. Ток короткого замыкания приводит к механическому и тепловому разрушению твердого диэлектрика — образуется сквоз­ное проплавленное отверстие. Изделие с «пробитой» изоляцией не подлежит эксплуатации, так как при подаче напряжения произойдет повторно пробой изоляции, но уже при более низком напряжении. При пробое газообразного или жидкого диэлектрика в результате подвижности молекул после снятия напряжения «пробитый» участок восстанавливает свои первоначальные свойства и такой диэлектрик можно использовать вновь. При пробое газообразных диэлектриков принимают максималь­ные (амплитудные) значения напряжения и тока (Uм =√2Uэф, Iм = √2Uэф), так как пробой газов обусловлен чисто электрическими процессами — электронной ударной ионизацией, фотоионизацией и холодной эмиссией электронов из катода.

При пробое твердых и жидких диэлектриков принимают дейст­вующие (эффективные) значения напряжения Uэф и тока Iэф, так как пробой этих диэлектриков обусловлен не только электронными про­цессами, но и тепловыми, возникающими в результате диэлектриче­ских потерь.

Напряжение, при котором наступает пробой, называют пробив­ным напряжением Uпp, a напряженность электрического поля в дан­ном случае характеризует электрическую прочность Епр диэлектрика.

Следовательно, электрическая прочность Епр диэлектрика — это минимальное значение напряженности приложенного электрическо­го поля, при котором наступает пробой. В простейшем случае можно принять

Еnp=Uпр/h, (5-1)

где h — толщина диэлектрика в месте пробоя.

Электрическая прочность Епр диэлектриков зависит в первую очередь от степени однородности образца (у твердых диэлектри­ков — от количества и размера пор, у жидких — от частиц нераство­ренной примеси, у воздуха — от микрокапель влаги), химического состава и строения материала, толщины образца (расстояния между электродами), частоты и времени приложения напряжения, давле­ния, влажности и т.д. На сегодняшний день нет теории, которая учи­тывала бы одновременное влияние всех указанных факторов на ме­ханизм пробоя и с помощью которой можно было бы определить Eпр любого диэлектрика. Поэтому для всех диэлектриков Eпр определяют экспериментально. Наиболее хорошо изученным является механизм пробоя воздуха.

Для надежной работы электротехнических устройств (деталей) Uраб берется всегда ниже, чем Uпp изоляции. Отношение Unp/Upаб представляет собой коэффициент запаса электрической прочности изоляции.

Различают пробой полныйканал проводимости проходит через всю толщу диэлектрика от одного электрода к другому (рис. 5.1, а),

неполный (например, коронный разряд) — канал проводимости не достигает одного из электродов и

частичный —- пробой происходиттолько в газовых или жидкостных включе­ниях (порах) твердой изоляции.

При совместном использовании диэлек­триков, находящихся в различных агрегат­ных состояниях, пробой может произойти не сквозь толщу одного из них, а по границе раздела фаз (см. рис. 5.1, б).

Рис. 5.1. Пробой (а) и по­верхностное перекрытие (6) твердого диэлектрика (схе­матически)


Такой пробой называют поверхностным (поверхностным разрядом, или поверхностным перекрыти­ем). Практически чаще всего изоляционная среда состоит из твердого диэлектрика и воздуха. В этом случае разряд происходит вдоль поверхности твердо­го диэлектрика в прилегающих слоях воздуха, и напряжение поверх­ностного разряда Uр будет ниже, чем Unp воздуха (Uпр> Uр).

5.2. ПРОБОЙ ГАЗООБРАЗНЫХ ДИЭЛЕКТРИКОВ

Пробой газообразных диэлектриков имеет чисто электрическую форму. Механизм пробоя газов рассмотрим на примере пробоя воз­духа.

В результате воздействия внешнего ионизирующего излучения воздух всегда содержит некоторое количество свободных ионов и электронов, которые, так же как и нейтральные молекулы, находятся в тепловом (хаотическом) движении. При приложении электриче­ского поля эти заряженные частицы дополнительно приобретают на­правленное движение. Важная роль при пробое, особенно в началь­ной стадии, принадлежит электронам как частицам, имеющим намного большую подвижность, чем ионы (см. гл. 3.1). Кроме того, при электронной ударной ионизации (см.ниже) отщепляемый от мо­лекулы электрон отталкивается от нее ионизирующим электроном, облегчая условие ионизации.

В упрощенном виде механизм пробоя газов сводится к следую­щему. Свободный электрон (обычно это n свободных электронов) под действием приложенного электрического поля, двигаясь по на­правлению к аноду, приобретает добавочную энергию W, равную для однородного поля

W = e•λ•E, (5.2)

где е — заряд электрона;

λ. — средняя длина свободного пробега электрона (участок пути, пройденный электроном от столкновения с одной молекулой до столкновения с другой молекулой);

Е — напряженность электрического поля (фактически это градиент потенциала поля на участке λ).

Если в момент столкновения электрона с нейтральной молеку­лой его добавочная энергия W будет равна или больше энергии иониззации Wи данной молекулы (W≥ Wи), то произойдет ее расщепле­те на положительный ион и электрон, т.е. произойдет электронная ударная ионизация. Значения энергии однократной ионизации ато­мов химических элементов лежат в относительно широких пределах: от 3,86 (Cs) до 24,58 (Не) эВ, у молекулярных газов — в более узких пределах, а у основных воздухообразующих газов в еще более узких пределах: от 12,5 (О2) до 15,8 (N2) эВ. Ниже приводятся значения энергии однократной ионизации некоторых молекулярных газов:

Химический N2 Н2 СО2 СН4 СО Н2О С2Н6 О2 NH3 NO2 NO состав газа

Энергия

ионизации, эВ 15.8 15,8 14,4 14,5 14,1 13,0 12,8 12,5 11,2 11 9,5

Энергия ионизации с каждым последующим электроном, отры­ваемым от молекулы (атома), возрастает, особенно значительно при переходе на последующий электронный слой (см.гл.1.4). Поэтому энергетически выгоден однократный акт ионизации молекулы (ато­ма), а не многократный.

После первого акта электронной ударной ионизации уже два (2n) электрона, разгоняясь в поле, будут ионизировать молекулы. Если в момент их «соударения» с молекулами W > Wи, то образуются четыре свободных электрона, при последующем акте — 8, затем 16 и т.д. В направлении анода со скоростью, примерно равной (1— 3)•106м/с, начнет прорастать электронная лавина аналогично снежной лавине с гор (рис. 5.2, АБ). Электронная ударная ионизация для каждого газо­образного диэлектрика начинается при определенной напряженно­сти поля, величина которой зависит от давления, температуры и час­тоты напряжения. Эта напряженность поля называется начальной напряженностью.

Кроме электронной ударной ионизации, важная роль при пробое принадлежит фотоионизации. Если при соударении электрона с мо­лекулой W электрона окажется меньше, чем Wи данной молекулы, то она не ионизирует. Получив добавочную энергию W, молекула пере­ходит в возбужденное состояние (один из ее валентных электронов перейдет на более высокий энергетический уровень). Это состояние молекулы неустойчивое, и, спустя примерно 10-8 с, электрон возвра­тится на прежний энергетический уровень, а молекула излучит квант

A──────────→B C──────────────────────────────→Д

Рис. 5.2. Схематическое изображение электронной лавины (АБ) и образования электроотрицательного стримера (СД) при пробое газа.

энергии в виде фотона. Фотоны, двигаясь со скоростью на два по­рядка большей (сф ~ 3•108 м/с), чем электронные лавины, значитель­но опережают последние. «Столкнувшись» с нейтральной молеку­лой, фотон ее ионизирует, если энергия, приобретенная молекулой, будет больше или равна ее энергии ионизации Wи. Этот процесс на­зывается фотоионизацией. Если энергия фотона окажется меньше Wи молекулы, то фотоионизации не произойдет. Получив энергию фо­тона, молекула перейдет в возбужденное состояние. В следующий момент молекула возвратится в нормальное состояние, излучив фо­тон. Этот процесс может повториться многократно, пока фотон не поглотится молекулой воздуха, имеющей Wи, равную или меньшую энергии фотона.

Образовавшийся в результате фотоионизации электрон, двигаясь к аноду и сталкиваясь с нейтральной молекулой, ионизирует ее, по­рождая новую, «дочернюю» лавину, находящуюся далеко впереди ос­новной лавины (см. рис. 5.2). Фотоны, испускаемые лавинами, дале­ко вперед обгоняя их, зарождают все новые и новые дочерние лавины. Основная и дочерние лавины, двигаясь к аноду, растут, до­гоняют друг друга, сливаются и образуют электроотрицательный стример — цепочку электронных лавин, слившихся в единое целое (см. рис. 5.2, СД). При этом если электронные лавины распространя­ются прямолинейно, то стример — зигзагообразно.

Одновременно с ростом электроотрицательного стримера начина­ет образовываться поток из положительных ионов, концентрация ко­торых особенно велика вблизи анода. Положительные ионы движутся в обратном направлении, образуя электроположительный стример (рис. 5.3), который перекрывает пространство между анодом и ка­тодом. Подходя к катоду, положительные ионы, ударяясь о его поверхность, образуют светящееся катодное пятно, излучающее элек­троны — «вторичные» электроны. Происходит холодная эмиссия электронов из катода (см. гл. 12.3.2). Положительный стример, заполняясь вторичными электронами и электронами, образующимися в резуль­тате электронной ударной ионизации и фотоионизации, превращает­ся в сквозной канал газоразрядной плазмы. Электропроводность этого канала очень высока, и по нему устремляется ток короткого замы­кания Iкз,.

Образование плазменного газоразрядного канала фактически и есть пробой газов. Возникновение Iкз — следствие пробоя. Б зависимосnи от величины Iкз пробой проявляется в виде искры или электрической дуги.

Рис. 5.3. Схематическое изображение образования газоразрядного плазменного канала

Из вышесказанного, следует, что электрическая прочность газо­образных диэлектриков зависит от значений Wи и W, при этом W, приобретаемая электронами под действием поля, в свою очередь, за­висит от Е и λ (см. формулу (5.2)). Чем больше энергия ионизации Wи молекул диэлектрика и меньше средняя длина свободного пробе­га электрона X, тем выше электрическая прочность. Значения Wи и λ зависят от природы диэлектрика, а λ, кроме того, и от его состояния (температуры, давления). Поэтому введение в состав молекул газо­образных диэлектриков атомов электроотрицательных элементов (F, С1) приводит к возрастанию Wи газа, а увеличение давления и сни­жение температуры — к уменьшению λ; Епр газа при этом возрастает.

5.2.1. Пробой газов в однородном электрическом поле

Длительность развития пробоя газов обычно составляет 10-710-8 с (при h «1 см). Чем больше приложенное напряжение, тем бы­стрее может развиться пробой. Если длительность воздействия на­пряжения очень мала, то величина Епр повышается. Это повышение обычно характеризуют коэффициентом импульса β:

β = Unp/Unp0 , (5.3)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее