Ответы - final (Ответы на экзамен 1), страница 13

2013-09-12СтудИзба

Описание файла

Файл "Ответы - final" внутри архива находится в папке "otvety_v1". Документ из архива "Ответы на экзамен 1", который расположен в категории "". Всё это находится в предмете "материалы и элементы электронной техники" из 5 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материалы и элементы электронный техники" в общих файлах.

Онлайн просмотр документа "Ответы - final"

Текст 13 страницы из документа "Ответы - final"

Диапазон рабочих частот для различных магнитомягких материа­лов определяется в значительной степени величиной их удельного электрического сопротивления. Чем больше удельное сопротивление материала, тем на более высоких частотах его можно применять. В области радиочастот применяют магнитомягкие материалы с удельным сопротивлением того же порядка, что у полупроводников и диэлектриков.

В постоянных и низкочастотных магнитных полях, включая зву­ковые частоты, применяют металлические магнитомягкие материалы с удельным сопротивлением порядка 10─7 Ом•м; их называют низко­частотными.

К низкочастотным магнитомягким материалам относятся: железо, сталь низкоуглеродистая электротехническая нелегированная, крем­нистая электротехническая сталь, пермаллои, альсиферы. В области радиочастот используют высокочастотные магнитомягкие материалы с удельным сопротивлением ρ = 10—1010 Ом•м..

К высокочастотным магнитомягким материалам относятся: маг-нитодиэлектрики и ферриты. При ультразвуковых частотах еще мож­но использовать тонколистовые (А = 25—30 мкм) и рулонные холод­нокатаные электротехнические стали и пермаллои (толщиной до 2—3 мкм).

15.1.1. Низкочастотные магнитомягкие материалы

Стержни (магнитопроводы) из магнитомягких материалов, при­меняемые в переменных полях, изготавливают не монолитными (из одного куска), а набирают из пластин или навивают из ленты, имеющие электроизоляционные покрытия. Это делают для увеличения электрического сопротивления стержня и тем самым уменьшают по­тери на вихревые токи. У таких стержней коэрцитивная сила, маг­нитная проницаемость и магнитные потери будут непосредственно зависеть от толщины листа (ленты): с уменьшение толщины измель­чается зерно и возрастает коэрцитивная сила и, следовательно, воз­растают потери на гистерезис; магнитная проницаемость и электро­проводность при этом уменьшаются и, следовательно, уменьшаются потери на вихревые токи.

Магнитные свойства материалов зависят не только от толщины листа, но также от частоты магнитного поля. С увеличением частоты тока потери на гистерезис возрастают пропорционально частоте в первой степени (см. формулу (14.14)), а потери на вихревые токи─пропорционально частоте во второй степени (см. (14.15)). При неко­торой частоте потери на вихревые токи начнут преобладать над поте­рями, вызванными гистерезисом, и фактически будут определять ве­личину полных магнитных потерь. Поэтому для каждого магнитного материала толщина листа (ленты) определяется частотой переменного тока, при которой работает сердечник, т.е. каждой частоте соответст­вует определенная толщина листа (ленты), при которой полные маг­нитные потери становятся минимальными. Например, лист металли­ческого магнитомягкого материала толщиной 0,3—0,5 мм применяют для стержней, работающих при частоте 50 Гц, 0,08—0,2 мм — при 400 Гц, 0,05 мм — при 1—20 кГц, 0,001 мм — при 100 кГц.

Таким образом, чтобы снизить потери на вихревые токи, необходимо применять магнитомягкие материалы с высоким удельным электриче­ским сопротивлением или увеличить сопротивление магнитного изделия (например, сердечника) путем покрытия электроизоляционным материа­лом отдельных листов (ленты), из которых его набирают (навивают).

Материалами, ко­торые обладают высоким электрическим сопротивлением и малым значением магнитной индукции, являются также магнитодиэлектрики и ферриты.

МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ

Основными характеристиками магнитотвердых материалов явля­ются коэрцитивная сила Hс, остаточная индукция Вs и максимальная удельная магнитная энергия WM, отдаваемая материалом в простран­ство.

Коэрцитивная сила магнитотвердых материалов на 1—4 десятич­ных порядков больше, чем у магнитомягких, однако магнитная про­ницаемость ц у них меньше; при этом чем больше Hс, тем меньше μ.

Магнитотвердые материалы применяют для изготовления посто­янных магнитов — источников постоянных магнитных полей, ис­пользуемых в различной аппаратуре, устройствах электромагнитной записи, фокусирующих устройствах для телевизоров, микрофонах, электроизмерительных приборах, микроэлектронике, СВЧ-приборах и т.д. Если постоянный магнит в виде кольцевого сердечника, то он практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри него. В этом случае магнитное поле вне сердечника практически отсутствует. Что­бы использовать магнитную энергию постоянных магнитов, нужно в замкнутом магнитопроводе создать воздушный зазор определенного размера. Тогда на образовавшихся концах возникнут полюсы, создаю­щие размагничивающее поле с напряженностью Hd, снижающее ин­дукцию внутри магнита до Bd, которая меньше остаточной индукции Вr. Остаточная индукция Вr характеризует материал в том случае, ко­гда магнит находится в замкнутом состоянии и предварительно был намагничен до состояния технического насыщения (Bs).

Максимальная удельная магнитная энергия Wм является важней­шей характеристикой при оценке качества магнитотвердых материа­лов. Она изменяется в широком диапазоне: от ~1 кДж/м3 для хроми­стых сталей, закаленных на мартенсит, до ~80 кДж/м3 для сплавов кобальта с редкоземельными элементами, образующими интерметал­лические соединения. Максимальная энергия Wм в воздушном зазоре тем больше, чем больше остаточная индукция Вr, коэрцитивная сила Hс и коэффициент выпуклости кривой размагничивания материала γ:

γ=(BH)mах/(2BrHc) (15.8)

С увеличением прямоугольности петли гистерезиса коэффици­ент выпуклости у приближается к единице.

Магнитный поток постоянного магнита с течением времени уменьшается. Это явление называют старением магнита. Старение может быть обратимым и необратимым.

Обратимое старение происходит под действием ударов, толчков, резких колебаний температуры, воздействия внешних постоянных полей. Оно приводит к снижению Вr на 1—3 %. Магнитные свойства при этом старении можно восстановить путем повторного намагни­чивания

27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.

Магнитострикция

Явление намагничивания ферромагнитных материалов, сопрово­ждающееся изменением их линейных размеров, называют магнито-стрикцией. Количественно магнитострикцию характеризуют величи­ной λs, называемой константой магнитострикции, которая факти­чески является относительным удлинением образца ( λs = ∆l/l) при намагниченности до состояния технического насыщения. Численное значение λs,, невелико (10─4—10─6), и к тому же λs не является постоянной величиной данного материала. С изменением напряженности магнитного поля Н λs, изменяется и даже может измениться ее знак Например, для α-Fe в слабых магнитных полях (Н < 32 кА/м) λs > 0, в сильных (Н > 32 кА/м) λs < 0, а при Н ≈ 32 кА/м λs = 0. При намаг­ничивании, как правило, положительная продольная магнитострикция образца соответствует его отрицательной поперечной магнитострикции, при этом объем материала почти не изменяется. Поэтому магнитострикцию характеризуют не объемным изменением, а ли­нейным (∆l/l). В монокристаллах ферромагнетика проявляется ани­зотропия магнитострикции. Магнитострикция наблюдается и в по­ликристаллических материалах, причем наибольшая — у никеля (λs = — 3,7•10─5), у сплава никоси (сплав Ni—Co—Si) λs = 2,5•10─5) и у ферритов (А.5= 2,6-10~5). Необычайно высокая магнитострикция у редкоземельных элементов (Tb, Dy, Но, Er, Tm) и их соединений. Например, у поликристаллического тербия А λs = 3 •10─3, а у монокри­сталлического — λs = 2•10─2.

Эффект магнитострикции обратим: механическая деформация материала вызывает изменение состояния его намагниченности. Прямой и обратный магнитострикционные эффекты широко приме­няют в приборостроении (реле, вибраторы, фильтры, преобразовате­ли и др.).

14.2.4. Причины, приводящие к образованию доменов

Выше отмечалось, что ферромагнетики в ненамагниченном со­стоянии самопроизвольно (спонтанно) разбиваются на множество доменов, намагниченных до насыщения. Магнитные моменты этих доменов дезориентированы друг относительно друга, поэтому сум­марная (результирующая) намагниченность М образца равна или близка нулю. Спонтанное деление объема ферромагнетика на мно­жество доменов объясняется тем, что многодоменная структура ферромагнетика наиболее устойчива и ей соответствует минимум полной свободной энергии системы, которая, в свою очередь, состоит из следующих основных видов: магнитостатической, об­менной, магнитной анизотропии, магнитострикции. В образова­нии многодоменной структуры особенно важны первые два вида энергии.

П ри намагничивании ферромагнетика (например, монокристал­ла) до насыщения он будет представлять собой постоянный магнит, состоящий из одного домена и создающим внешнее магнитное поле (рис. 14.6, а; стрелкой обозначен магнитный момент домена). Такой образец обладает максимальной магнитостатической энергией. Если этот же монокристалл будет состоять из двух доменов с противопо­ложной ориентацией спиновых магнитных моментов (см. рис. 14.6, б), то магнитостатическая энергия уменьшится в два раза, так как

Рис. 14.6. Уменьшение магнитостатическрй энергии, обусловленное разделением .монокристалла ферромагнетика на магнитные домены

часть магнитного потока, выходящего из одной области, замкнется на другую. При возникновении в монокристалле четырех доменов (см. рис. 14.6, в) магнитостатическая энергия уменьшится в четыре раза и т.д. Еще более энергетически выгодной будет доменная струк­тура, изображенная на рис. 14.6, г. В результате образования гранич­ных доменов в виде трехгранных призм, называемых замыкающими доменами, магнитостатическая энергия становится равной нулю.

Процесс деления монокристалла на домены имеет определенный предел. При увеличении числа доменов возрастает протяженность границы между доменами и соответственно возрастает обменная энергия, необходимая для их образования. Поэтому на каком-то эта­пе деление доменов становится энергетически невыгодным и пре­кратится в силу того, что энергия, необходимая для образования до­менных границ, станет больше того выигрыша в энергии, который происходит за счет уменьшения магнитостатической энергии в ре­зультате деления доменов.

14.2.5. Механизм технического намагничивания и магнитный гистерезис

Процесс технического намагничивания магнитного материала сопровождается изменением его доменной структуры. В размагни­ченном образце направления спонтанной намагниченности доменов совпадают с осями легкого намагничивания. При приложении маг­нитного поля самым выгодным направлением технической намагни­ченности домена будет та его ось легкого намагничивания, которая составляет наименьший угол с направлением внешнего магнитного поля.

Основная кривая намагничивания. Важнейшей характеристикой ферромагнетиков является основная кривая намагничивания, описы­вающая зависимость намагниченности М или магнитной индукции В от напряженности магнитного поля Н для предварительного раз­магниченного образца, а также зависимость магнитной проницаемо­сти μ от напряженности магнитного поля Н и предельная петля маг­нитного гистерезиса.

Рис. 14.7. Основная кривая намаг­ничивания (зависимость В от Н) и зависимость магнитной проницае­мости μ от напряженности магнит­ного поля Н


На рис. 14.7 представлены кривые зависимости В и (μ от напря­женности магнитного поля Н для образца ферромагнетика предвари­тельно размагниченного. На кривых этих зависимостей можно выде­лить четыре характерных участка.

I участок — это область самых слабых магнитных полей (H→ 0) — характеризуется линейной зависимостью B от H и посто­янным значением μ. На этом участке происходит увеличение объема (рост) тех доменов, векторы намагниченности которых имеют наи­меньшие углы с направлением внешнего магнитного поля; их рост происходит за счет доменов, у которых эти углы наибольшие. Рост доменов происходит путем обратимого смещения их границ. Поэто­му процесс намагничивания на этом участке называют процессом об­ратимого смещения границ доменов. На этом участке суммарная на­магниченность образца становится отличной от нуля, и материал характеризуется начальной магнитной проницаемостью μн которую экспериментально определяют в полях с Н ≈ 0,1 А/м. Величина μн является удобной характеристикой материала сердечников высоко­частотных катушек индуктивности, работающих, как правило, в по­лях с невысокой напряженностью. После снятия внешнего магнит­ного поля границы доменов снова возвращаются в прежнее положение, поэтому остаточная намагниченность не возникает.

II участок — область слабых магнитных полей — характеризуется крутым подъемом В и μ при увеличении Н. В конце этого участка магнитная проницаемость проходит через максимум и представляет собой максимальную магнитную проницаемость μм. Величина μм явля­ется удобной характеристикой материала сердечников реле, дроссе­лей, трансформаторов и др., работающих в полях повышенной напряженности (конец II— начало III участка). На этом участке гра­ницы доменов перемещаются на большие расстояния, а сам процесс перемещения границ доменов необратим, т. е. после снятия внешне­го магнитного поля доменная структура не возвращается в исходное состояние, и образец сохраняет какую-то техническую намагничен­ность. Поэтому процесс намагничивания на этом участке называют процессом необратимого смещения границ доменов. Переориентация спиновых магнитных моментов внутри доменов происходит не постепенно, а скачкообразно. К концу этого участка границы доменов исчезают, и образец превращается в однодоменный, вектор намагни­ченности которого совпадает с направлением легкого намагничива­ния и составляет наименьший угол с направлением внешнего маг­нитного поля.

III участок — область средних полей — характеризуется неболь­шим увеличением В и значительным уменьшением μ. Процесс на­магничивания на этом участке заключается в постепенном повороте вектора намагниченности образца до полного совпадения с направ­лением внешнего магнитного поля Н, поэтому его называют процес­сом вращения вектора намагниченности. В конце этого участка при Н = Hs намагниченность М материала достигает значения намагни­ченности технического насыщения Ms (M → Ms или, можно сказать, что магнитная индукция В материала достигает значения индукции технического насыщения Bs(B → Вs). Магнитная проницаемость μ на этом участке значительно снижается, так как напряженность поля Н увеличивается, а магнитная индукция В изменяется незначительно [μ = B/( μoH); см. формулы (14.4) и (14.5)].

IVучасток — область сильных магнитных полей — характеризу­ется незначительным возрастанием индукции В с увеличением на­пряженности магнитного поля Н и приближением значения магнит­ной проницаемости μ к единице. Незначительное увеличение магнитной индукции В на этом участке происходит в результате парапроцесса, который заключается в гашении сильным полем дезори­ентирующего действия теплового поля. Абсолютно строгую ориента­цию всех спиновых магнитных моментов атомов внутри домена можно получить только при температуре абсолютного нуля, когда отсутствует дезориентирующее действие теплового движения. По мере повышения температуры, дезориентация спиновых магнитных моментов атомов возрастает. Дезориентирующее действие теплового движения компенсируется ориентирующим действием внешнего магнитного поля. В этом и заключается парапроцесс. Парапроцесс имеет место и в слабых полях, но здесь он перекрывается процесса­ми смещения и вращения. В сильных полях, когда индукция В дос­тигла значения индукции технического насыщения Bs (В = Bs), парапроцесс проявляется более отчетливо.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
423
Средний доход
с одного платного файла
Обучение Подробнее