zlobina_af01 (Учебник Злобина), страница 5

2013-09-12СтудИзба

Описание файла

Файл "zlobina_af01" внутри архива находится в папке "ychebnik_zlobina". Документ из архива "Учебник Злобина", который расположен в категории "". Всё это находится в предмете "вакуумная и эмиссионная электроника (виэ)" из 5 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "вакуумка и эмиссионка (виэ)" в общих файлах.

Онлайн просмотр документа "zlobina_af01"

Текст 5 страницы из документа "zlobina_af01"

Снижение потенциального барьера за счет электрического поля

Теперь можно определить плотность тока термоэмиссии при наличии внешнего ускоряющего поля, взяв вместо  ( ).

Обозначив символом плотность тока эмиссии в отсутствии поля и заменив его значением, получаем уравнение Шоттки:

На практике при сильных электрических полях ток эмиссии возрастает быстрее, чем это следует из уравнения Шоттки. Причина расхождения расчета и эксперимента состоит в том, что при выводе уравнения учитывали понижение потенциального барьера и не учитывали его сужение. Между тем, заметное сужение потенциального барьера приводит к тому, что начинает проявлять туннельный эффект «просачивания» сквозь барьер (не совершая работы) электронов с энергией меньше (эфф ).

Это, в свою очередь, приводит к дополнительному увеличению плотности тока эмиссии.

2.8 Электростатическая (автоэлектронная) эмиссия

Опыт показывает, что и при сколь угодно низкой температуре, но в сильных электрических полях, порядка 108109 В/м, наблюдается автоэлектронная эмиссия, быстро возрастающая с увеличением напряженности поля.

Автоэлектронной эмиссией называют эмиссию электронов, обусловленную наличием у поверхности катода сильного ускоряющего электрического поля.

Внешнее ускоряющее электрическое поле, снижая потенциальный барьер на величину

,

увеличивает эмиссионный ток. При очень высокой напряженности электрического поля у поверхности катода потенциальный барьер может снизиться настолько, что его вершина окажется на одной высоте с уровнем Ферми. При этом должна наблюдаться электронная эмиссия из холодного металла. Заменив в уравнении  на эфф, можно рассчитать критическую напряженность электрического поля:

Например, для эВ получаем В/м, а в действительности на практике В/м. Не учитывается просачивание электронов сквозь барьер. Не учитывается сужение барьера под действием внешнего электрического поля.

Дело в том, что при автоэлектронной эмиссии формируется узкий потенциальный порог, сквозь который электроны могут туннелировать за счет чисто квантовомеханического эффекта. Такие переходы сквозь барьер совершаются без затраты электронами работы. Возможность туннельных переходов объясняется волновыми свойствами электронов.

Упрощенная формула для предельной плотности тока jАm автоэлектронной эмиссии из металла:

Так как эфф порядка нескольких электрон-вольт, то предельная плотность тока автоэлектронной эмиссии может быть более 1010 А/см2.

Достоинства автокатодов: 1) отсутствие накала, следовательно, безынерционность; 2) очень высокие плотности тока; 3) малые размеры катода; 4) малый разброс эмиттированных электронов по энергиям; 5) высокая крутизна вольт-амперной характеристики. Основные недостатки: 1) высокие напряжения, 2) нестабильность тока.

2.9 Взрывная эмиссия

Специфическим видом туннелирования электронов из кристаллов в вакуум является взрывная эмиссия. Было обнаружено, что в определенный момент tз (рис. 2.14) происходит разрушение автоэлектронного эмиттера собственным автоэмиссионным током, сопровождающееся резким (на 2–3 порядка) возрастанием тока через вакуумный промежуток.



Интервал времени tз между подачей импульса напряжения (применялись импульсы с фронтом порядка 1 нс) и взрывом острия зависит от плотности тока автоэмиссии и напряженности поля.

Как видно из рис.2.14, временная зависимость изменения электронного тока при взрыве острия (катода) состоит из нескольких этапов: 1 – медленное возрастание тока; 2 – быстрое возрастание тока; 3 – квазистационарное состояние; 4 – переход к вакуумной дуге.

Механизм взрывной эмиссии состоит в следующем: взрыв острийного катода сопровождается возникновением у поверхности катода плотного плазменного сгустка, который вследствие быстрого разделения в нем зарядов создает у поверхности катода большой положительный объемный заряд, который является источником дополнительного, ускоряющего электроны, поля. Таким образом, возрастание тока на участке 2 (рис. 2.14) связано с автоэлектронной эмиссией в поле объемного положительного заряда. Предельная длительность импульса тока взрывной эмиссии определяется скоростью разлета плазмы пл и расстоянием d между катодом и анодом:

При пл (2  3)  104 мс–1 и d порядка десятых долей сантиметра соответствует десятым долям микросекунды.

Установлено, что момент tз возрастания тока на участке 2 совпадает с появлением у поверхности катода светящихся сгустков (катодных факелов), расширяющихся со скоростью ~ 2104м/c. Прежде чем катодный факел достигнет анода, ему навстречу начинает двигаться анодный факел, возникающий за счет бомбардировки анода мощным потоком быстрых электронов.

Взрыв острия связан с расходованием материала катода, т.е. с необратимым изменением его состояния. Несмотря на это, значение токов взрывной эмиссии достаточно хорошо повторяется от импульса к импульсу за счет того, что при каждом взрыве расходуется лишь очень небольшое количество материала, и в условиях наличия сильного поля у поверхности катода происходит самовоспроизведение эмиттирующих центров.

Такие центры представляют собой субмикроскопические острия, которые возникают на поверхности при конденсации материала после взрыва либо вытягиваются полем из жидкой фазы эмиттера, расплавленного собственным автоэмиссионным током.

При взрывной эмиссии напряженность поля у катода составляет не менее 5109 В/м. Плотность тока взрывной эмиссии на два порядка выше автоэлектронной

Итак, взрывная эмиссия – это импульсное испускание автоэлектронов сквозь обволакивающее катод облако плазмы, для создания которой необходимы взрывы микроострий собственным автоэмиссионным током.

2.10 Фотоэлектронная эмиссия

Фотоэлектронной эмиссией, или внешним фотоэффектом, называют эмиссию электронов из кристалла под действием падающего на его поверхность светового потока (квантов).

Основные законы фотоэмиссии:

1. Отношение числа эмиттированных электронов Ne к числу приходящих на катод фотонов Nф (=Ne/Nф) – величина, которая зависит от рода материала и от частоты падающего на фотокатод света. Это отношение называют квантовым выходом фотокатода. Представим число приходящих на фотокатод фотонов как отношение светового потока к энергии фотона:

.

Тогда спектральная чувствительность фотокатода будет:

Видно, что спектральная чувствительность фотокатода, как и квантовый выход , является величиной, зависящей от рода кристалла (материала фотокатода) и частоты (энергии квантов) падающего на фотокатод света.

2. Проникая в металл фотокатода, каждый фотон взаимодействует только с одним свободным электроном, отдавая ему полностью свою энергию. Энергия фотона суммируется с энергией электрона , которую он имел до встречи с фотоном. Если при этом электрон движется в сторону поверхности металла и компонента его скорости в этом направлении достаточна для преодоления потенциального барьера на границе, то электрон может покинуть металл. Вероятность этого зависит от величины энергии фотона и от того, какой из валентных электронов (быстрый или медленный) приобретает эту энергию. При своем движении в металле электрон может потерять часть энергии при рассеянии на дефектах кристаллической решетки и на примесных атомах.

Уравнение баланса энергии эмиттированного электрона

где – кинетическая энергия электрона после выхода из кристалла.

Если считать, что электрон после получения энергии фотона при движении к поверхности не потерял ее ( ), а первоначально он имел энергию, равную уровню Ферми, то можно записать:

Это максимальная энергия, которую может иметь электрон за пределами кристалла. Она определяется энергией кванта света ( ).

3. При уменьшении частоты световых колебаний (энергии кванта) должна уменьшаться максимальная кинетическая энергия вылетающих электронов. При некоторой пороговой частоте 0 она станет равной нулю.

Физический смысл этого соотношения состоит в том, что энергии фотона едва достаточно для освобождения из кристалла электронов уровня Ферми. Электроны более низших электрических уровней вообще не могут покинуть кристалл, получив энергию h0. При частоте ниже 0 даже электроны уровня Ферми не могут покинуть кристалл, т.е. фототок отсутствует.

Зависимость квантового выхода электронов от частоты света называется спектральной характеристикой фотокатода. При некоторой частоте на характеристике наблюдается максимум. Спектральная характеристика определяется материалом фотокатода (смотри справочник).

Энергия электронов после выхода из кристалла зависит от их энергии до поглощения кванта и от потерь энергии на пути к поверхности кристалла.


Наиболее вероятная энергия электронов, соответствующая максимуму кривой, составляет 0,40,5 от их максимальной энергии (рис. 2.15). При увеличении частоты света возрастает максимальная энергия электронов. Увеличивается и наиболее вероятная энергия электронов, т.е. кривая распределения растягивается в сторону больших энергий. Обратите внимание: электроны покидают фотокатод с энергиями в десятые доли электрон-вольта, и чтобы они работали в приборе, их надо ускорять.

4. Квантовый выход чистых металлов даже в максимуме спектральной характеристики не превышает 10–3 эл./квант.

Поиски материалов, обладающих более хорошими фотоэмиссионными свойствами, привели к появлению обширной группы полупроводниковых катодов. У полупроводников имеется несколько групп электронов, существенно различающихся энергетическими состояниями. Например, примесный полупроводник донорного типа. Наиболее многочисленной является группа валентных электронов. Она определяет собственный фотоэффект полупроводников. Второй группой являются электроны донорной примеси. Третьей группой являются свободные электроны зоны проводимости.

Квантовый выход полупроводников, имеющих малую эффективную работу у выхода, оказывается большим. Фотоэмиттеры такого типа называются эффективными. Эффективные полупроводники имеют кубическую структуру кристаллической решетки, характерную для дырочной электропроводности, и обладают хорошей электропроводностью, необходимой для пополнения электронов из внешней цепи.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее