DOCX (Ещё одни билеты готовые), страница 9

2019-05-10СтудИзба

Описание файла

Файл "DOCX" внутри архива находится в папке "Ещё одни билеты готовые". Документ из архива "Ещё одни билеты готовые", который расположен в категории "". Всё это находится в предмете "биофизика" из 5 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "DOCX"

Текст 9 страницы из документа "DOCX"

(c – скорость света (3 · 108 м/с), h – постоянная Планка (6,626 · 10-34 Дж · с; 1 Дж = 6,24 · 1018 эВ).

УФ-излучение — это электромагнитное излучение в диапазоне от 10 нм до 400 нм. Низковолновую область УФ-излучения (10-100 нм) можно отнести к ионизирующим излучениям.

Природные источники ионизирующего излучения: спонтанный радиоактивный распад радионуклидов, термоядерные реакции, например на Солнце, индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер, космические лучи. Искусственные источники ионизирующего излучения: искусственные радионуклиды, ядерные реакторы, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

Ионизирующие излучения условно подразделяются:

  • Электромагнитные (поток фотонов высокой частоты):Рентгеновское – 3х106 – 3х109 ГГц и γ-излучение – >3х109 ГГц

  • Корпускулярные излучения представлены частицами с ненулевой массой, обладающими высокими скоростями. Такими частицами могут быть электроны, позитроны, нейтроны, α-частицы, ускоренные ионы.

В результате радиоактивного распада образуется три типа излучения, различных по своим характеристикам.

Линейная плотность ионизации. Эта величина показывает число ионов одного знака, образованных ионизирующей частицей или фотоном на элементарном пути. Наибольшей линейной плотностью ионизации обладает α-излучение, поскольку оно образовано тяжёлыми ядрами гелия и обладает большой кинетической энергией. Величина линейной плотности ионизации пропорциональна энергии излучения.

Средний линейный пробег. Величина, отражающая проникающую способность излучения. Самым проникающим излучением является γ-излучение. Средний пробег в воздухе 300м., в тканях – 1 метр.

β-излучение обладает промежуточными значениями линейной плотности и линейного пробега.

Для оценки величины ионизирующего излучения и его влияния на вещество используют дозиметрические показатели.

1. Доза излучения, или экспозиционная доза. Это величина, которая даёт представление о количестве энергии излучения, падающей на объект. Фактически равно полному заряду ионов одного знака, возникающих в элементарном объёме воздуха в отношении к массе воздуха. Измеряется в Кулонах на килограмм. Внесистемная единица: рентген. 1рентген=2,58х10-4Кл/кг. Интенсивность излучения определяют в единицах рентген в секунду.

2. Доза облучения, или поглощённая доза. Это величина энергии ионизирующего излучения, переданная веществу. Эта величина измеряется в единицах Грей. 1Грей равен дозе любого ионизирующего излучения при котором в 1кг вещества поглощается 1Дж энергии этого излучения. Внесистемная единица: 1Рад = 10-2Грей.

3. Эквидозиметрические показатели. Это показатели биологического действия ионизирующего излучения.

· Относительная биологическая эффективность – коэффициент, показывающий во сколько раз излучение данного типа отличается от стандартного рентгеновского излучения при 180-250 кэВ.

· Эквивалентная доза – поглощённая в органах и тканях доза излучения умноженная на взвешенный коэффициент для данного вида излучения, отражающий качественное воздействие излучения на объект. Единица измерения Зиверт = 1Дж/кг. Внесистемная: БЭР = 1/100 Зиверт.

Билет 12.

Электронные уровни молекул. Взаимодействие фотонов с биологически важными молекулами.

01 При взаимодействии света с веществом может происходить преломление световых лучей и их рассеяние, либо поглощение фотонов молекулами, либо и то и другое вместе. Если произошло поглощение кванта света молекулой, то через IO–8 – IO–9 c может произойти испускание части поглощенной энергии в виде кванта света с большей длиной волны; такое излучение называют люминесценцией. Различают два вида люминесценции - флуоресценцию и фосфоресценцию, отличающихся по времени жизни и энергии излучаемых фотонов. Изучение поглощения фотонов и люминесценции позволяет судить о строении поглощающих свет молекул или участков молекулы (хромофоров), а также производить их качественный и количественный анализ, выяснять физико-химические свойства среды, окружающей молекулы или их хромофорные группы.

На основании измерения спектров поглощения и люминесценции можно построить схему энергетических уровней данной молекулы (рис. 1.1).

Дело в том, что каждая молекула имеет серию заполненных и свободных электронных орбиталей. Поглощение кванта света приводит к переходу электрона на орбиталь с большей энергией (молекула при этом переходит на более высокий энергетический уровень). Обратный переход может сопровождаться испусканием кванта люминесценции. Энергия поглощенного или испускаемого кванта равна разности энергии между уровнями: E2 –E1 =hν

Наряду с электронными переходами в молекуле, сопровождающимися испусканием фотона (флуоресценцией и фосфоресценцией),

после поглощения кванта возможен ряд безызлучательных переходов с более высоких электронных уровней и колебательных подуровней на нижележащие уровни и подуровни. Если между молекулами в системе имеется взаимодействие, то возможен безызлучательный перенос (или миграция) энергии от одной молекулы к другой. Все эти процессы перераспределения энергии электронного возбуждения, разыгрывающиеся начиная с поглощения кванта, называют фотофизическими процессами.

Из спектров поглощения некоторые биологически важных соединений (см. рис. 1.4) видно, что чем больше в молекуле число сопряженных двойных связей, тем больше длина волны максимума поглощения данного вещества. Молекулы пероксидов жирных кислот содержат две сопряженные двойные связи (диеновые конъюгаты), максимум в спектре поглощения лежит при 233 им. Продукты пероксидного окисления липидов, содержащие три сопряженные двойные связи (триеновые конъюгаты), имеют максимум поглощения 260-280 им. Ретиналь, молекулы которого содержат 6 сопряженных двойных связей, характеризуется максимумом поглощения 360 нм.

Фотозащита и фотореактивация.

Существует два механизма, предотвращающих повреждение нуклеиновых кислот:

1. Фотореактивация. Процесс обусловлен действием фермента фотолиазы. Фермент активируется действием света 320-500нм и катализирует распад пиримидиновых димеров.

2. Фотозащита. При предварительном облучении клеток длинноволновым ультрафиолетом значительно снижается их чувствительность к коротковолновому ультрафиолету. Это снижение чувствительности обеспечивается синтезом серотонина, который берёт на себя часть поступающего излучения.

70. Фотодеструктивные процессы. Их общая характеристика. Действие ультрафиолетового излучения на белки.

Фотодеструктивные процессы – это процессы нарушения свойств биологических молекул под действием света. Фотодеструктивные процессы напрямую индуцируются коротковолновым ультрафиолетом, который поглощается нуклеиновыми кислотами и белками. Длинноволновое УФ излучение и видимый свет практически не поглощается НК и белками, для реализации их деструктивного действия большую роль играют фотосенсибилизаторы.

В белках наиболее подвержены действию ультрафиолета аминокислоты триптофан и цистеин.

Триптофан под действием коротковолнового ультрафиолета подвергается ионизации. Триптофан отделяет электрон, который сольватируется в растворе. Далее, катион диссоциирует на протон и нейтральный радикал, обладающий высокой реакционной способностью, и может образовывать сшивки с соседними группами аминокислотной цепи белка. Если реакции подвергся ТРП активного центра, это приводит к потере реакционной способности белка, а если нет, то это приводит к изменению конформации белка и снижению функциональной активности.

Сольватированный электрон может соединяться с растворённым кислородом с образованием супероксид-иона, который может вызывать повреждения по фотодинамическому механизму.

Фотореакции цистеина происходят по сходному механизму, что приводит к разрыву дисульфидной связи, нарушению конформации белка и изменению его активности.


Билет 13

Абсорбционная спектроскопия биологических объектов.

Абсорбционная спектроскопия, изучает спектры поглощения электромагнитного излучения атомами и молекулами в-ва в разл.агрегатных состояниях. Интенсивность светового потока при его прохождении через исследуемую среду уменьшается вследствие превращения энергии излучения в разл. формы внутр. энергии в-ва и (или) в энергию вторичного излучения. Поглощат. способность в-ва зависит гл. обр. от электронного строения атомов и молекул, а также от длины волны и поляризации падающего света, толщины слоя,концентрации в-ва, т-ры, наличия электрич. и магн. полей. Для измерения поглощат. способности используют спектрофотометры-оптич. приборы, состоящие из источника света, камеры для образцов, монохроматора (призма или дифракционная решетка) и детектора. Сигнал от детектора регистрируется в виде непрерывной кривой (спектра поглощения) или в виде таблиц, если спектрофотометр имеет встроенную ЭВМ.

Из спектров поглощения некоторые биологически важных соединений (см. рис. 1.4) видно, что чем больше в молекуле число сопряженных двойных связей, тем больше длина волны максимума поглощения данного вещества. Молекулы пероксидов жирных кислот содержат две сопряженные двойные связи (диеновые конъюгаты), максимум в спектре поглощения лежит при 233 им. Продукты пероксидного окисления липидов, содержащие три сопряженные двойные связи (триеновые конъюгаты), имеют максимум поглощения 260-280 им. Ретиналь, молекулы которого содержат 6 сопряженных двойных связей, характеризуется максимумом поглощения 360 нм.

Качественный и количественный спектрофотометрический анализ

Качественный спектрофотометрический анализ основывается на том, что каждое соединение имеет характерный для него спектр поглощения. Для идентификации вещества наиболее важны следующие параметры:

1) число максимумов в спектре поглощения,

2) положение (длина волны) каждого максимума;

3) значение коэффициентов поглощения в каждом из максимумов (в единицах s или ε);

4) отношение амплитуд максимумов, т. е. отношение коэффициентов поглощения в максимумах, если их несколько.

Сложность спектра поглощения зависит от того, какому числу электронных переходов между разными уровнями соответствует данный спектр. Считается, что каждый электронный переход дает полосу поглощения, которая на графике представлена кривой, близкой к гауссовой кривой нормального распределения.

Количественный спектрофотометрический анализ основан на применении закона Бугера-Ламберта-Бера. При количественном анализе можно одновременно определять концентрацию нескольких веществ, если спектры их поглощена различаются по

форме. Суммарный спектр поглощения DΣ нескольких веществ есть простая сумма спектров поглощения компонентов, так как при всех длинах волн оптические плотности компонентов суммируются. Например, для двухкомпонентной смеси при любой длине волны DA+B = DA + DB, где DA и DB – оптические плотности компонентов. Исходя из уравнения (1 . 10) можно записать: DA+B = εAcAl + εBcBl (1.20)

Если молярные коэффициенты поглощения для обоих веществ εA и εB известны, равно как и толщина кюветы l, то найти неизвестные концентрации cA и cB все равно нельзя, если измерения DA+B проводились при одной длине волны. Для двух разных длин волн случают систему из двух уравнений с двумя неизвестными, решив которую, находят обе концентрации:


Выбранные две длины волны λ1 и λ2 должны быть такими, для которых молярные коэффициенты поглощения компонентов (εAλ1), (εBλ1) и (εAλ2), (εBλ2)различаются больше всего; это не всегда соответствует максимумам в спектре поглощения веществ (рис. 1.9). Теоретически, если число длин волн, используемых для измерений, равно числу компонентов, можно проанализировать и более сложные смеси. На практике же редко удается осуществить количественный спектрофотометрический анализ более 2-3 соединений в одной смеси. Критерием правильности анализа может служить совпадение сконструированного спектра, рассчитанного после определения концентраций, по уравнению типа приведенного выше, со спектром смеси, измеренным в опыте.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5258
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее