Лаб раб 2 УНЧ (Лабораторные работы по электротехнике)

2018-01-12СтудИзба

Описание файла

Файл "Лаб раб 2 УНЧ" внутри архива находится в следующих папках: Лабораторные работы по электротехнике, Лаборатория N 331, Описания. Документ из архива "Лабораторные работы по электротехнике", который расположен в категории "". Всё это находится в предмете "электротехника (элтех)" из 4 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лабораторные работы", в предмете "электроника и электротехника" в общих файлах.

Онлайн просмотр документа "Лаб раб 2 УНЧ"

Текст из документа "Лаб раб 2 УНЧ"

7


Лабораторная работа № 2б. Исследование усилителя низкой частоты с резистивно-емкостной связью

Цель работы: ознакомление с принципом работы и основными характеристиками многокаскадных усилителей с резиствно-емкостной связью.

Краткие теоретические сведения.

Усилители – это устройства, предназначенные для усиления переменных сигналов. Такое преобразование осуществляется за счет энергии постоянного источника питания.

Усилители широко применяются в науке и технике.

Простейшим усилителем является усилительный каскад, содержащий усилительный элемент (биполярный или полевой транзистор), пассивные элементы (резисторы и конденсаторы) и постоянный источник питания, которые обеспечивают нужный режим работы каскада.

Н а рис. 1, приведён наиболее распространенный усилительный каскад с общим эмиттером (ОЭ) на основе биполярного транзистора n-p-n типа. Назначение элементов каскада:

источник питания Ек (включается между клеммой +Ек и «землёй» ), обеспечивает режим каска­да но постоянному то­ку («режим покоя»), т.е. величины токов Iбо, Iк и напряжений Uбэ0, Uкэ0, на которые накладываются переменные составляющие токов и напряжений. За счёт энергии посто­янного источника осуществляется усиление переменного сигнала Uвх, снимаемого с генератора синусоидальных колебаний, в усиленный сигнал Uвых, поступающий, в нагрузку Rн. Величина резистора Rб определяет значение «тока покоя» в цепи базы Iбо, Iк – нагрузочный резистор, определяет значение переменного выходного напряжения Uвых. Разделительные конденсаторы Ср1 и Ср2 исключают прохождение постоянных составляющих токов и напряжений каскада в генератор или нагрузку (или из генератора и нагрузки в каскад).

Усилительный каскад, изображенный на рис. 1, является усилителем напряжения. Он характеризуется коэффициентом уси­ления по напряжению

k = ,

который составляет величину порядка 10 – 100.

С целью получения большого коэффициента усиления усили­тельного устройства несколько каскадов объединяются в много­каскадный усилитель. Его коэффициент усиления равен произве­дению коэффициентов усиления всех каскадов устройства:

k = k1•k2•...•kN,

где N – число каскадов.

П ри этом выходное напряжение предыдущего каскада пода­ется на вход последующего. Соединение каскадов производится через элементы связи (конденсаторы, резисторы либо трансфор­маторы), которые определяют тип усилителя.

Н а рис. 2 изображена, принципиальная схема двухкаскадного усилителя с резистивно-емкостной (RC) связью, являющейся наиболее распространенным типом связи. Каскады соединены через разделительный конденсатор Ср2. Элементы Rэ и Сэ в цепях эмиттеров транзисторов Т1 и Т2 обеспечивают температурную стабилизацию режима усиления. Делители напряжения R1-R2 и R3-R4 задают величину постоянного напряжения на базах тран­зисторов Т1 и Т2 каждого каскада.

Аналогичная схема усилителя с RC-связью на микросхемах представлена на рис. 3, где в усилительных каскадах исполь­зованы операционные усилители с большим коэффициентом усиле­ния (М1 и М2). Назначение соединительных элементов схемы аналогично усилителю на транзисторах. Коэффициент усиления этого усилителя значительно выше, чем усилителя на дискретных элементах.

Основные характеристики усилителей – амплитудная и амплитудно-частотная. Амплитудная характеристика усилителя – это зависимость амплитудного значения выходного напряжения от амплитудного значения входного напряжения. Эта характерис­тика представлена на рис. 4. Участок «ab» кривой соответ­ствует линейному режиму работы усилителя (т.е. Uвых пропор­ционально Uвх), и коэффициент усиления k = const). На участке «bc» при увеличении входного напряжения появляются искажения формы выходного напряжения, называемые нелинейными искажениями, и коэффициент усиления падает. Рабочим участком является линейный участок характеристики («ab»).

Амплитудно-частотная характеристика усилителя – это за­висимость коэффициента усиления усилителя от частоты усили­ваемого сигнала. Вид этой характеристики для усилителя с RC-связью показан на рис. 5.

Коэффициент усиления в области средних частот k0 посто­янен. В области низких частот (при f→0) сопротивление конден­сатора связи Ср2 растёт:

XCр2 = →∞

Напряжение на нём также растёт, следовательно, выходное напря­жение первого каскада падает и k→0 при f→0. Так как выход первого каскада шунтируется входной ёмкостью второго каскада С0 то в области высоких частот при f→∞ соп­ротивление ёмкости

XC0 = →0,

следовательно, напряжение на входе второго каскада падает и k→0 при f→∞.

Снижение коэффициента усиления в области нижних и верхних частот называют частотными искажениями. Они оцениваются коэффициентами частотных искажений на верхних частотах

Мв =

и на нижних частотах

Мв =

где kв и kн – коэффициенты усиления на верхних и нижних частотах. Очень часто допустимое значение коэффициента частот­ных искажений М принимают равным . Частоты fн гр и fв гр, соответствующие допустимым значениям коэффициента частотных искажений, называют нижней и верхней граничными частотами, а диапазон частот

Δf = fн гр - fв гр

полосой пропускания усилителя.

Описание лабораторного стенда

На лицевой панели лабораторного стенда изображены две исследуемые схемы двухкаскадных усилителей с RC-связью (разделены горизонтальной чертой):

  • сверху – на биполярных транзисторах VТ1 и VТ2 (схема соответствует рис. 2);

  • снизу – на микросхемах М1 и М2 (cм. рис. 3);

Переключатели, тумблеры и ручки потенциометров обеих схем локализованы около соответствующих усилителей.

Внизу под схемой усилителя на транзисторах расположены гнёзда Гн1 – Гн6, номера которых соответствуют определённым точкам исследуемой схемы (точки указаны на схеме).

Блок питания Ек.

В правом верхнем углу стенда находится блок питания (Ек) усилителя: переключатель Ек напряжения для двух типов усилителей, потенциометр плавной регулировки напряжения Ек и вольтметр для измерения напряжения питания.

Верхнее положение тумблера Ек1 соответствует питанию усилителя на транзисторах.

Нижнее положение тумблера Ек2 соответствует питанию усилителя на микросхемах.

Регулировка ёмкости разделительного конденсатора цепи связи Ср3 – Ср4 осуществляется тумблером В3.

Верхнее положение тумблера В3 соответствует ёмкости Ср4 = 0,01 мкФ.

Нижнее положение тумблера В3 соответствует ёмкости Ср3 = 20,0 мкФ.

Регулировка ёмкости конденсаторов Сэ в цепях эмиттеров транзисторов Т1 и Т2) осуществляется переключателями В4 и В6.

Левое положение переключателей В4 и В6 соответствует ёмкости Сэ = 2,0 мкФ, правое положение – 20,0 мкФ.

Нагрузка усилителя регулируется переключателем В7.

Среднее положение B7 – холостой ход.

Левое положение – активная нагрузка. Величина нагрузки усилителя регулируется потенциометром Rн2. Величина нагрузки первого каскада регулируется потенциометром Rн1.

Источником переменного входного сигнала является генератор синусоидальных колебаний, позволяющий регулировать вели­чину и частоту сигнала (стандартный генератор располагается рядом с исследуемым стендом).

Величина усиленного выходного сиглала измеряется лампо­вым вольтметром, а форма исследуется с помощью осциллографа (вольтметр и осциллограф располагаются рядом с исследуемым стендом).

Порядок выполнения работы

  1. Ознакомиться с лабораторным стендом, генератором си­нусоидальных колебаний, ламповым вольтметром, осциллографом.

  2. Установить все тумблеры (В1, ВЗ, В5) в нижнее поло­жение, переключатели (В4, В6, В7) – в среднее, потенциометры (Rос1, Rос2, Rос3, Rн2) – в крайнее левое положение, по­тенциометр Rн1 – в среднее положение, переключатель Ек1 – в верхнее положение.

  3. Собрать схему исследования усилителя на транзисторах (рис. 6): входные гнёзда усилителя (Гн1, Гн2 – ) соединить с выходом генератора синусоидальных колебаний, выходные гнезда усилителя (Гн9, Гн10 – ) присоединить к вольтметру.

  4. Включить питание (тумблер «сеть») стенда, генератора и вольтметра.

  5. Установить потенциометром Ек напряжение питания +20 В.

  6. Снять 2 амплитудно-частотные характеристики усилителя при различных значениях Ср и Сэ в режиме холостого хода, (т.е. зависимость k(f), где k – коэффициент усиления; f – частота, Гц.). Для этого установить и поддерживать при измерениях входное напряжение Uвх = 1 мВ, выходное напряжение, измеренное в мВ, будет численно равно коэффициенту усиления. Частоту сигнала менять в диапазоне от 2•102 до 2•105 Гц. Устанавливать следующие значения Ср и Сэ:

Номер опыта

Значения емкостей

Положение тумблеров

1

Ср = 0,01 мкФ

Сэ = 20,0 мкФ

В3 – вверх,

В4, В6 – вправо

2

Ср = 20,0 мкФ

Сэ = 20,0 мкФ

В3 – вниз,

В4, В6 – вправо

Результаты измерений записать в таблицу 1 журнала лаборатор­ных работ.

  1. Определить коэффициенты усиления первого и второго каскадов и двухкаскадного усилителя.

Для этого на вход усилителя подать с генератора вход­ной сигнал Uвх = 1 мВ на частоте f = 5 кГц. Последовательно измерить вольтметром выходное напряжение первого (Гн3, Гн4 – ) и второго (Гн5, Гн6 – ) каскадов.

Результаты записать в таблицу 2 журнала лабораторных ра­бот.

  1. Снять 2 амплитудных характеристики усилителя в режи­мах холостого хода и нагрузочном.

Для этого установить частоту входного сигнала f = 5 кГц; величину входного сигнала Uвх изменять от 1 до 30 мВ.

режим холостого хода – переключатель В7 установлен в среднее положение;

нагрузочный режим – переключатель В7 установлен в правое положение, потенциометр Rн2 – в среднее положение.

Измерить значения Uвых (Гн5, Гн6 – ) и записать в таблицу 3 журнала лабораторных работ.

  1. Исследовать форму выходного сигнала усилителя в за­висимости от величины входного сигнала.

К выходным клеммам усилителя (Гн5, Гн6 – ) подсое­динить осциллограф. Включить тумблер «сеть» и настроить осциллограф. Меняя величину входного напряжения, исследовать изменение формы выходного напряжения. Зарисовать в журнале (рис. 5.4) форму сигнала, наблюдаемую на экране осциллографа в линейном режиме работы усилителя (при отсутствии искажения формы выходного сигнала) и в нелинейном режиме (т.е. когда форма выходного сигнала искажается).

  1. Выключить стенд и приборы. Разобрать схему.

Порядок оформления

По данным таблицы 1 построить 2 амплитудно-частотные характеристики усилителя, определить Δf для М = .

По данным таблицы 2 рассчитать коэффициент усиления первого каскада k1, второго каскада k2 и их произведение k = k1•k2 и сравнить с измеренным коэффициентом усиле­ния усилителя k = .

По данным таблицы 3 построить 2 амплитудные характе­ристики усилителя. Выделить на них линейный участок.

Зарисовать осциллограммы выходного сигнала усилителя в линейном и нелинейном режимах работы.

Литература

  1. Герасимов В.Г. и др. Основы промышленной электроники М.: - Высшая школа, 1986 г..

  2. Забродин Ю.С. Промышленная электроника. М.: -Высшая школа, 1982 г..

Контрольные вопросы

  1. Какие элементы образуют усилительный каскад?

  2. С какой целью применяются многокаскадные усилители?

  3. Что такое коэффициент усиления?

  4. Что такое амплитудная характеристика усилителя?

  5. Что такое амплитудно-частотная характеристика?

  6. Чему равен коэффициент усиления многокаскадного усилителя?

  7. Как влияет ёмкость разделительного конденсатора на амплитудно-частотную характеристику?

  8. Как влияет ёмкость конденсатора в цепи эмиттера на коэф­фициент усиления.

  9. Что такое линейный и нелинейный режимы работы усилителя?

  10. Что такое частотные и нелинейные искажения?

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее