Главная » Все файлы » Просмотр файлов из архивов » Документы » Ответы с Ириными дополнениями

Ответы с Ириными дополнениями, страница 13

2015-08-02СтудИзба

Описание файла

Документ из архива "Ответы с Ириными дополнениями", который расположен в категории "". Всё это находится в предмете "материалы и элементы электронной техники" из 6 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материалы и элементы электронной техники" в общих файлах.

Онлайн просмотр документа "Ответы с Ириными дополнениями"

Текст 13 страницы из документа "Ответы с Ириными дополнениями"

Таким образом, толщина листового магнитного материала непо­средственно зависит от частоты переменного тока, при которой ра­ботает изделие, и каждой частоте соответствует определенная толщи­на листа, при которой полные магнитные потери минимальны.

Потери, вызванные магнитным последействием (магнитной вязко­стью), — это свойство магнитных материалов проявлять зависимость запаздывания изменения индукции, происходящее под действием изменяющегося магнитного поля, от длительности воздействия этого поля. Эти потери обусловлены в первую очередь инерционностью процессов перемагничивания доменов. С уменьшением длительно­сти приложения магнитного поля запаздывание и, следовательно, магнитные потери, вызванные магнитным последействием, увеличи­ваются, поэтому их необходимо учитывать при использовании маг­нитных материалов в импульсном режиме работы.

Мощность потерь Рмп, вызванную магнитным последействием, нельзя рассчитать аналитически. Она определяется как разность ме­жду удельными магнитными потерями Р и суммой потерь на гисте­резис Рт и вихревые токи Рт:

Рмп = Р - (Рг +Рвт). (14.16)

При перемагничивании в переменном поле имеет место отстава­ние по фазе магнитной индукции от напряженности магнитного поля. Происходит это в результате действия вихревых токов, препят­ствующих, в соответствии с законом Ленца, изменению магнитной индукции, а также из-за гистерезисных явлений и магнитного после­действия. Угол отставания называют углом магнитных потерь и обо­значают δм. Для характеристики динамических свойств магнитных материалов используют тангенс угла магнитных потерь tg δм. На рис. 14.12 представлена эквивалентная последовательная схема заме­щения и векторная диаграмма тороидальной катушки индуктивности с сердечником из магнитного материала. Активное сопротивление r1, эквивалентно всем видам магнитных потерь, потерям в обмотке и

Рис. 14.12. Эквивалентная схема замещения и векторная диаграмма катушки индуктивности с магнитным сердечникомэлектрической изоляции. Если пренебречь сопротивлением обмотки катушки и ее собственной емкостью, то из векторной диаграммы по­лучим

tg δм = r1 / ω L = 1/Q (14.17)

где ω — угловая частота; L — индуктивность катушки; Q - доброт­ность катушки с испытуемым магнитным материалом.

Уравнение (14.17) показывает, что тангенс угла магнитных по­терь является величиной, обратной добротности катушки.

Индукцию, возникающую в магнитном материале под действием магнитного поля, можно представить в виде двух составляющих: одна совпадает по фазе с напря­женностью поля Bм1 = Bм•cosδ, другая отстает на 90° от напряженности поля и равна Вм1 = Вм•sinδ. При этом Вм1 связана с обратимыми процессами превращения энергии при перемагничивании, а Вм2 — с необратимыми. Для характеристики магнитных свойств материалов, применяемых в цепях переменного тока, наряду с другими харак­теристиками, используют комплексную магнитную проницаемость μ., которая равна

Μ = μ/ - jμ//, (14.18)

где j — мнимая единица (j = √-l); μ/ — вещественная часть, или упругая магнитная проницаемость

μ// — мнимая часть, или вязкая магнитная проницаемость, или проницаемость потерь

Отношение μ// / μ/ является тангенсом угла магнитных потерь tgδм

tgδм= μ/// (14.21)

26. Ферриты. Магнитные свойства тонких ферритовых плёнок.

Диамагнетики - материалы, в которых магнитный момент атома Мат равен нулю.

Диамагнетизм заключается в индуцировании внешним магнит­ным полем в электронных оболочках атомов, ионов или молекул магнитного момента.

Для диамагнетиков характерно то, что у них вектор намагничен­ности направлен против вектора внешнего намагничивающего поля.

Парамагнетизм наблюдается у материалов, атомы (ионы) которых имеют нечетное число электронов (кроме Си, Ag, Sb, Bi).

Атомы (ионы или молекулы) парамагнетиков в отсутствие внеш­него магнитного поля уже обладают собственным магнитным мо­ментом, который обусловлен нескомпенсированными в атомах спиновыми магнитными моментами электронов. Но поскольку взаи­модействие между магнитными моментами атомов (ионов или моле­кул) равно нулю или очень мало, их магнитные моменты расположе­ны беспорядочно (рис. 14.1, а), и результирующая намагниченность материала равна нулю.

При приложении магнитного поля магнитные моменты атомов парамагнетиков ориентируются в направлении внешнего магнитного поля и усиливают его, т. е. проявляется положительная намагничен­ность (km>0), вследствие чего они втягиваются в области с макси­мальной напряженностью магнитного поля.

Антиферромагнетики — это материалы, атомы (ионы) которых обладают магнитным моментом, обусловленным, как у пара- и фер­ромагнетиков, нескомпенсированными спиновыми магнитными мо­ментами электронов. Однако у антиферромагнетиков магнитные мо­менты атомов под действием обменного взаимодействия (у них обменный интеграл отрицательный; см. гл. 14.2.1) приобретают не параллельную ориентацию, как у ферромагнетиков, а антипарал­лельную (противоположную) (см. рис. 14.1, в) и полностью компен­сируют друг друга.

Pис. 14.1. Схематическое изображе­ние магнитных моментов атомов в от­сутствие внешнего магнитного поля в парамагнетиках (а), ферромагнетиках (б), антиферромагнетиках (в) и ферримагнетиках(г)

Ф ерромагнетизм является частным случаем парамагнетизма. У ферромагнетиков, как и у парамагнетиков, магнитные моменты ато­мов (ионов) обусловлены нескомпенсированными в них спиновыми магнитными моментами электронов. Однако у ферромагнетиков в отличие от парамагнетиков магнитные моменты атомов располо­жены не беспорядочно, а в результате обменного взаимодейст­вия (см. ниже гл. 14.2.1) ориентированы параллельно друг другу (рис. 14.1, б) с образованием магнитных доменов.

Магнитные домены представляют собой элементарные объемы ферромагнетиков, находящиеся в состоянии магнитного насыщения. В домене нескомпенсированные спиновые магнитные моменты электронов всех атомов выстроены параллельно друг другу. Домен­ная структура образуется в отсутствие внешнего магнитного поля в результате самопроизвольной (спонтанной) намагниченности, кото­рая происходит при температурах ниже некоторой так называемой точкой Кюри Тк. Для чистого железа Тк = 768°С, никеля Тк = 358°С, кобальта T=1131 С. Разбивка всего объема ферромагнетика на множество доменов энергетически выгодна. В отсутствие внешнего магнитного поля магнитные моменты доменов направлены так, что их результирующий магнитный момент равен или близок нулю. До­мены имеют размеры около 0,001 — 10 мм3 при толщине пограничных слоев между ними (границ) в несколько десятков ангстрем. В домен­ных границах происходит постепенное изменение направления век­тора намагниченности от одного домена к направлению вектора на­магниченности в соседнем домене.

Ферримагнетики имеют доменную структуру, состоящую из двух или более подрешеток, связанных антиферромагнитно (антипарал­лельно). Поскольку подрешетки образованы атомами (ионами) раз­личных химических элементов или неодинаковым их количеством, они имеют различные по величине магнитные моменты, направлен­ные антипараллельно (рис. 14.1, г). В результате появляется отличная от нуля разность магнитных моментов подрешеток, приводящая к спонтанному намагничиванию кристалла.

Таким образом, Ферримагнетики можно рассматривать как не­скомпенсированные антиферромагнетики. Свое название эти материа­лы получили от ферритов — первых нескомпенсированных антифер­ромагнетиков, а магнетизм ферритов назвали ферримагнетизмом.

Ферримагнетики, обладающие полупроводниковыми свойствами, называются ферритами.

Ферриты обладают высокой магнитной проницаемостью, малой ко­эрцитивной силой, большим значением индукции насыщения, но важ­нейшая их особенность состоит в том, что они обладают большим элек­трическим сопротивлением (р ~ 103Ом•см). Это обстоятельство позво­ляет применять ферриты в области высоких частот, где обычные фер­ромагнетики обладают большими потерями, связанными с образовани­ем вихревых токов.

Для создания функциональных устройств наиболее перспективны ферриты в виде пленок. Специфика магнитных свойств тонких пленок определяется тем, что их линейные размеры в плоскости пленки значи­тельно превышают толщину. При определенной толщине пленка стано­вится однодоменной по толщине. В этом случае основным процессом перемагничивания будет однородное вращение, когда магнитные мо­менты одновременно поворачиваются по магнитному полю. Длительность этого процесса очень мала ~ 10-9 с, что обеспечивает создание бы­стродействующих магнитных устройств. Магнитные пленки характеризуются также ярко выраженной маг­нитной анизотропией, которая определяется наличием в магнитной пленке двух осей намагничивания: ось легкого намагничивания, вдоль которой стремится установиться вектор намагничивания пленки, и ось трудного намагничивания, направленная перпендикулярно первой оси. Соответственно при перемагничивании по оси легкого намагничивания необходимо затратить существенно меньшую энергию, чем при пере­магничивании по оси трудного намагничивания. Энергия WA, которую необходимо затратить, чтобы отклонить вектор намагниченности в плоскости пленки на угол θ от оси легкого намагничивания, определя­ется выражением WA = Asin2Q, где А — константа анизотропии. При ма­лой толщине пленок направление легкого намагничивания обычно рас­положено в плоскости пленок, и образуются так называемые плоские домены, условно изображенные на рис. 2.15, а; ширина доменов из­меняется от долей до единиц микрон.

У некоторых ферритов наблюдается только одна ось легкого на­магничивания. Если поверхность монокристаллической пленки из тако­го материала перпендикулярна оси легкого намагничивания, то образуются домены другого вида — лабиринтного (см. рис. 2.15, б) с направ­лением спонтанной намагниченности, перпендикулярным поверхности пленки. Магнитное поле, нормальное к пленке, изменяет доменную структуру. Вначале уменьшается площадь доменов с вектором намагни­ченности, противоположным приложенному полю (см. рис. 2.15, в), и при некоторой величине поля они превращаются в цилиндры (см. рис. 2.15, г). Образуются устойчивые цилиндрические магнитные доме­ны (ЦМД) или «магнитные пузырьки». При дальнейшем росте внешнего магнитного поля диаметр ЦМД уменьшается, и, наконец, цилиндриче­ские домены исчезают и вся пленка намагничивается однородно.

Если в плоскости пленки создать неоднородное магнитное поле, то ЦМД будут перемещаться под его действием. Цилиндрические магнит­ные домены, существующие в определенных магнитных полях и управ­ляемые внешним полем, представляют особый интерес для создания логических и запоминающих функциональных устройств.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее