Физика-9кл-Перышкин-Гутник-2001-ГДZ (991173), страница 8
Текст из файла (страница 8)
A\mdh\u_\hegujZkijhkljZgyxlkyihgblb501.>Zghλ fT kGZclb v.2.>Zghv1 fkv2 fkv3 fkν =pMijZ`g_gb_J_r_gb_λ2,9 fv= == 1450 fkT 0,002 kHl\_lv fkJ_r_gb_v 340 fkv1483fkλ1 = 1 =≈ 0,47 f; λ 2 = 2 =≈ 2,05 f;725 =pν 725 =pνv5500 fkλ3 = 3 =≈ 7,59 f.725 =pνGZclbλ1, λ2, λ3. Hl\_lλ1 ≈ fλ2 ≈ fλ3 ≈ f3. A\md [m^_l jZkijhkljZgylvky b ih f_lZeem b ih \ha^mom bq_eh\_dmkeurbl^\Zm^ZjZ4.>ZghJ_r_gb_ta\ kSa\ = va\ta\; SiZj = viZjtiZj; Sa\ = SiZj; va\ta\ = viZjtiZj ⇒va\ fkv t340 fk ⋅ 2 k⇒ viZj = a\ a\ == 20 fktiZj kt iZj34 kSa\ = SiZjGZclbviZj.Hl\_lviZj fk5. Dh]^Z\b^bfu_b keurbfu_m^ZjugZqbgZxlkh\iZ^Zlvkgh\ZlhwlhagZqblqlhq_eh\_dkeurblij_^u^msbci_j_^\b^bfufm^ZjMijZ`g_gb_1.
Kms_kl\m_l2. FZ]gblgh_ ihe_ [m^_l ^_ckl\h\Zlv gZ klj_edm k gZb[hevr_ckbehc \ lhqd_ N k gZbf_gvr_c ² \ lhqd_ F K jZkklhygb_ffZ]gblgh_ihe_hkeZ[_\Z_lMijZ`g_gb_1. Z?klvwlhlhqdbD b K[\ lhqd_:.2.GZ iZju lhq_d P − Q, X − Y khklhjhgu g_h^ghjh^gh]h fZ]gblgh]hihey ^_ckl\mxl kbeu h^bgZdh\u_,dZd ih fh^mex lZd b ihgZijZ\e_gbx ld PO = QO, XO = ,YO.32;<451MijZ`g_gb_1.2.3. K_\_jguc ihexk gZoh^blky kijZ\Z Z x`guc ke_\Z Boiheh`_gb_fh`ghbaf_gblvihf_gy\iheyjghklvkhe_ghb^Z4. Lhd[m^_ll_qvhllhqdbS d lhqd_N.5. KijZ\Z ² k_\_jguc ihexk ke_\Z ± x`guc ih ijZ\bem ijZ\hcjmdb6.
< i_j\hf kemqZ_ \aZbfh^_ckl\b_ h[mkeh\e_gh fZ]gblgufbkbeZfb\h\lhjhf±dmehgh\kdbfbMijZ`g_gb_1. IhijZ\beme_\hcjmdbhij_^_ey_fqlh\ijZ\h2. Ih ijZ\bem e_\hc jmdb hij_^_ey_f qlh lhd l_q_l hl lhqdb B dlhqd_ A b ke_^h\Zl_evgh \_jogbc ihexk bklhqgbdZ lhdZih^dexq_g d hljbpZl_evghfm ihexkm Z gb`gbc ² diheh`bl_evghfm523. GZ e_\hf jbkmgd_ e_\uc ijh\h^gbd ^\b`_lky \\_jo ijZ\ucijh\h^gbd²\gbaGZijZ\hfjbkmgd_e_\ucijh\h^gbd^\b`_lky\gbaijZ\ucijh\h^gbd²\\_jo4.UvUF5.
Ih ijZ\bem e_\hc jmdb hij_^_ey_f qlh wlh iheh`bl_evghaZjy`_ggZyqZklbpZ1.>ZghI = 4 A; F = 0,2 Hl kf fMijZ`g_gb_J_r_gb_F0,2 GB= == 0,5 LeIl 0,1 f ⋅ 4 :GZclbB.Hl\_lB Le2. FZ]gblgZy bg^mdpby g_ baf_gy_lky hgZ ihklhyggZy \_ebqbgZBaf_gy_lkylhevdhkbeZ^_ckl\mxsZygZijh\h^gbd²hgZlZd `_dZdb lhdmf_gvrZ_lky\ jZaZMijZ`g_gb_FZ]gblguc ihlhd ijhgbau\Zxsbc dZlmrdm D2 fh`gh f_gylviml_fbaf_g_gby\aZbfghchjb_glZpbbdZlmr_db baf_g_gb_fkbeulhdZj_hklZlhfR bebaZfudZgb_fjZafudZgb_fdexqZDMijZ`g_gb_1. Baf_gblvfZ]gblgucihlhdq_j_adZlmrdmD2 iml_fhibkZgguf\mijZ`g_gbb2. Bg^mdpbhgguclhd\hagbdZ_l\ kemqZ_]g_\hagbdZ_l\ kemqZyoZ[\^1.>ZghJ_r_gb_MijZ`g_gb_53ν =p11== 0,02 kν 50 =pGZclb T.Hl\_lT k111=p2.
Ih]jZnbdmgZoh^bfqlhT=k , ν= =60T (1 60 )c: f:T=MijZ`g_gb_Wlbiheygbq_fg_hlebqZxlkyb kms_kl\h\Zeb[u[_adZlmrdbKMijZ`g_gb_1.>ZghT = 10-7 cGZclbν.2.>Zght = 8,3⋅10-7 cc = 3⋅108 fkGZclb S.3.>Zghλ fc = 3⋅108 fkJ_r_gb_11ν = = −7 = 10 7 =pT 10 cHl\_lν = 107 =pJ_r_gb_S = ct = 3⋅108 fk ⋅ 8,3⋅10-7 k fHl\_lS = 249 fJ_r_gb_c 3 ⋅ 108 fkν= == 5 ⋅ 105 =p600 fλGZclbν.Hl\_lν = 5⋅105 =p4.
AgZy kdhjhklv jZkijhkljZg_gby kb]gZeZ k hgZ jZ\gZ kdhjhklbk\_lZ b \j_fy _]h jZkijhkljZg_gby t g_ljm^gh jZkkqblZlvijhc^_ggh_ jZkklhygb_ S AZ \j_fy t kb]gZe ijhc^_l jZkklhygb_ Slm^Zb h[jZlghbke_^h\Zl_evghS = ct/2.5. G_la\mdh\u_\hegug_jZkijhkljZgy_lky\ \Zdmmf_MijZ`g_gb_1. 126 K ²Z_f 63 Li ²Z_f 4020 Ca ²Z_f2.
6, 3, 20.546 Z_fjZa1 Z_f4. Z[Z_f\\ jZa]^_`5. 146 K → 146−+01O + −01 _ ⇒147 O =147 N ²Zahl3. < n =MijZ`g_gb_1441717 N + 2 He → 8 O +1 H Bf__f Ke_^h\Zl_evghaZdhgkhojZg_gbyaZjy^Z\uihegy_lkyMijZ`g_gb_1. < y^j_ ZlhfZ [_jbeeby 94 Be gmdehgh\ ² ijhlhgh\ ² g_cljhgh\²N = A + Z = 9 – 4 = 5. [ Np = Z \ Q \ we_f_glZjguo2. 3919 D Z Zwe_dljbq_kdboaZjy^Zo]Ne = Np ^_`: aN =A–Z=± bm Z_f3. Qbkeh ijhlhgh\ khhl\_lkl\_ggh we_dljhgh\ \ Zlhf_ jZ\gh _]hihjy^dh\hfm ghf_jm \ lZ[ebp_ F_g^_e__\Z ke_^h\Zl_evgh Zeblbc[nlhjMijZ`g_gb_Wlb Zlhfu bf_xl h^bgZdh\u_ fZkku gh bo obfbq_kdb_ k\hckl\ZjZaebqguWlhh[tykgy_lkyl_fqlh m gbojZagu_aZjy^h\u_ qbkeZZagZqblb dhebq_kl\hwe_dljhgh\MijZ`g_gb_1.238234492 U → 90Th + 2 He .23423400 ~ 23423400~90Th → 91Pa + −1 e+ 0 ; 91Pa → 92 U + −1 e+ 0 2.j_amevlZl_^\moβjZkiZ^h\Ke_^h\Zl_evgh \MijZ`g_gb_Ld gmdehgu bf_xl fZkkm lh f_`^m gbfb ^_ckl\mxl kbeu]jZ\blZpbhggh]hijbly`_gby55AZ^Zqbij_^eZ]Z_fu_^eyih\lhj_gbyb ijbqZkZonbabdb\ g_^_exU1. >ey\_dlhjZ a bf__fZ[Zy ± ±\_Zy| =U] | a | = (0,5 − 0,5) 2 + (2 − 5) 2 = 3.U>ey\_dlhjZ b bf__fZ[by ± \_by_ ]U| b | = (4 − 1) 2 + (4 − 0) 2 = 5.U>ey\_dlhjZ c bf__fZ[cy ± \ _cy_ ]U| c | = (6 − 4) 2 − (1 − 1) 2 = 2.U>ey\_dlhjZ d bf__fZ±[dy ±± ±\_dy_ ]U| d | = (3 − 6) 2 + (−4 − 0) 2 = 5>ey\_dlhjZ e bf__fZ±[ey ±±± \U|ey_ ] | e | = (0,5 − 0,5) 2 + (−1 − (−4)) 2 = 3.UU2.
ax = 0, bx = | b | , cx = 0, dx = − | d | .3. ZA (0;2), B ±[sx = 12 – 0 = 12, sy ±± ±\_sx| = 12,U|sy| = 5; ] | s | = (12 − 0) 2 + (−3 − 2) 2 = 13.→4.yBsAB = ( 4 − ( −8)) + (3 − ( −2)) xA22 LZd dZd imlv g_ fh`_l ij_\ukblvi_j_f_s_gbyfh^mevdhlhjh]h_klvgZbf_gvr__jZkklhygb_f_`^mgZqZevghcb dhg_qghclhqdZfbimlblhhgfh`_l[ulveb[hjZ\_geb[h[hevr_i_j_f_s_gbyghgb \dh_fkemqZ_g_f_gvr__]h5. Ijyfhebg_cguf jZ\ghf_jguf ^\b`_gb_f gZau\Z_lky lZdh_^\b`_gb_ ijb dhlhjhf aZ h^bgZdh\u_ ijhf_`mldb \j_f_gb l_ehkh\_jrZ_l h^bgZdh\u_ i_j_f_s_gby \^hev g_dhlhjhc hkb lZd dZd^\b`_gb_ ijyfhebg_cgh_ Ihwlhfm sx = vxt ]^_ vx ² ihklhyggZy56\_ebqbgZ oZjZdl_jbamxsZy kdhjhklv i_j_f_s_gby Bkoh^y bamjZ\g_gbyo = o0 + sxihemqbfx = x0 + vxt.6.>ZghJ_r_gb_vx fkx0 f x(t) = x0 + vxt ⇒ x(t) = 3 + 5t.GZclbx(t).Hl\_lx(t) = (3 + 5tf7.xlxi<hdaZe x\X>ZghJ_r_gb_xi = 260 – 10t < gZqZevgucfhf_glgZ[ex^_gbyxl = –100 + 8t xi = 260 – 10 ⋅ 0 = 260; xl = –100 + 8 ⋅ 0 = –100.< fhf_gl\klj_qbxi = xl beb±t = –100 + 8t.Hlkx^ZgZoh^bffhf_gl\j_f_gb\klj_qbt = 20 c.x\ = 260 – 10 ⋅ 20 = –100 + 8 ⋅ fGZclbxi, Hl\_lxi = 260, xl = –100, t = 20 c, x\ fxl, t, x\.8.
Kh]eZkgh]jZnbdmiehl[uekims_ggb`_klhygdbgZf_ljh\Ih]jZnbdmhij_^_ebfo0 = –10; vx fk fko = –10 + 2t.9.>ZghJ_r_gb_t=2cv − v0 vvv t 4,5 fk ⋅ 2 k= ; t1 = 1 = 1 == 3 c;a=v0 = 03 fkttavv fkat 2 vv 2 t 2 v 2 t (4,5 fk )2 ⋅ 2 kv1 fk= 6,75 fs= 1 = 1 2 = 1 =22v2 ⋅ 3 fk2tvGZclbt1, s.Hl\_l: t1 = 3 c, s = 6,75 f.U UUUU UU Uv +vat 2 U at t U10. s = v0 t += t v0 + = (v0 + (v0 + at )) = 0t.22 22U UU UU UUU U(v − v 0 )t 2 v 0 + va t 2 U v − v0 U Ut;11. s = v0 t +=; a=; s = v0 t +22t2tU U U UU2 U2(aU, sU) = v − v0 , v0 + v t = 1 ⋅ (vU, vU0 ) + vU2 − vU02 − (vU0 , vU) = v − v0 ⇒22 t 2U2 U2U v − v0⇒a=U .2s(12.>Zghtx = 0,3 k)J_r_gb_57s fs 0,43 f=≈ 1,43 fkt0,3 k2s2 s 2 ⋅ 0,43 fa = 2 ; v = at =≈ 2,87 f/k.=t0,3 ktGZclbvkj, v.Hl\_lvkj ≈ fkv ≈ fk2a ta t 2 3a t 213.
so[ = o[ ; sFd = cd = o[ = 3sh[. ⇒ < jZaZ[hevr_222vkd = acdt = 3ah[t = 3vh[. ⇒ < jZaZ[hevr_14.vkj =>eykdhjhklgh]hebnlZvx>eyh[uqgh]hebnlZ0t15.>Zghvx(t) = 10 + 0,5tJ_r_gb_v0x = vx(0) = 10 + 0,5 ⋅ fka fk2.K l_q_gb_f \j_f_gb fh^mev \_dlhjZ kdhjhklbZ\lhfh[bey\hajZklZ_llZddZdZ!b v0>0).Hl\_lv0x fkGZclbv0x.16. Ihke_ m^ZjZ mkdhj_gb_ rZc[u gZijZ\e_gh ijhlb\ kdhjhklbDh]^Z kdhjhklv h[jZsZ_lky \ gmev mkdhj_gb_ lh`_ klZgh\blky(5 − t ) fk 0 ≤ t ≤ 5;jZ\gufgmex | v x (t ) |= t > 5.0 fkvxt5817. o = o0 + sx JZg__ [ueh ^hdZaZgh qlh ijb jZ\ghmkdhj_gghf^\b`_gbbk mkdhj_gb_fZo b gZqZevghckdhjhklvx v0x i_j_f_s_gb_a ta tjZ\ghsx = v0xt + x ihwlhfmo = o0+ v0xt + x .2218.>ZghJ_r_gb_ax fk2vx(t) = v0x + axt = 0,1t \ fk2).v0x = 0a t20,1 ⋅ t 2x(t) = x0 + v0xt + x == 0,05t2.x0 = 022GZclbvx(t), x(t). Hl\_lv0x fk19.>ZghJ_r_gb_|v\_ dfq|vf| = ||v\| – |v\|| ijb v\ ↑↑ vf beb |vf| = ||v\| + |v\||Z|vhlg| = 0ijb v\ ↑↓ vf.[|vhlg_ dfq Z) v\ ↑↑ vf b v\ ↑↓ vf ⇒ |vf| = |40 df/q ± 0 df/q| =\|vhlg_ dfq = 40 df/q.]|vhlg_ dfq [) v\ ↑↑ vf ⇒ |vf| = |40 df/q – 10 df/q| = 30 df/q.v\ ↑↓ vf ⇒ |vf| = |40 df/q + 10 df/q| = 50 df/q.\v\ ↑↑ vf ⇒ |vf_ _dfq ±dfq_ v\ ↑↓ vf ⇒ |vf_ _dfq dfq_ dfq]v\ ↑↑ vf ⇒ |vf_ _dfq dfq_ dfqv\ ↑↓ vf ⇒ |vf_ _dfq ±dfq_ dfqGZclbvf.Hl\_l Z dfq [ dfq beb dfq \ bebdfq[dfq bebdfq20.
KdhjhklvdZl_jZhlghkbl_evgh[_j_]Zihl_q_gbxvd == vd + vl = 6vl a^_kvvd ²kdhjhklvdZl_jZhlghkbl_evgh\h^uvl —kdhjhklv l_q_gby \h^u hlghkbl_evgh [_j_]Z kdhjhklv dZl_jZhlghkbl_evgh [_j_]Z ijhlb\ l_q_gby vd = vd – vl = 4vl LZdbfv6h[jZahf d + = = 1,5.vd − 4m 3,87 ⋅ 10 −3 d] d]f3 Fu \b^bf qlh iehlghklv=V3 ⋅ 10 −3 f 3rZjbdZjZ\gZiehlghklb\ha^moZZke_^h\Zl_evgh\ulZedb\ZxsZykbeZ ^_ckl\mxsZy gZ rZjbd jZ\gZ _]h kbe_ ly`_klb AgZqbl ihi_j\hfm aZdhgm GvxlhgZ rZjbd hklZg_lky \ khklhygbb ihdhy ld_]h hlimklbeb [_a gZqZevghc kdhjhklb bgZq_ [u hg jZ\ghf_jgh bijyfhebg_cghi_j_f_sZeky22. Kh]eZkghlj_lv_fmaZdhgmGvxlhgZkbeu^_ckl\mxsb_gZrZjujZ\guKh]eZkgh\lhjhfmaZdhgmGvxlhgZbomkdhj_gbyjZ\gu21. ρ =59amFF Hlkx^Z c = a < j_Zevguo nbabq_kdbo, ZZ =mcmaa a mcaZ^ZqZo dh]^Z fZkku rZjh\ g_ jZ\gu gmex fh^mev mkdhj_gbyklZevgh]h rZjZ g_ fh`_l jZ\gylvky gmex Hg fh`_l [ulv dZd[hevr_ lZd b f_gvr_ fh^mey mkdhj_gby Zexfbgb_\h]h rZjZ qlhaZ\bkblebrvhlkhhlghr_gbyfZkkrZjh\23.
Ba nhjfmeu ^ey g0 ihemqZ_f GM3 = g 0 R32 Ih^klZ\eyy \Zk =nhjfmem^eygihemqZ_fg =g 0 R32( R3 + h) 2.v2v2 111; a1 == a1 ; L1 = ma1 ; L2 = ma 2 = ma1 = L 1 .r2r 222DZd mkdhj_gb_lZd b kbeZ^_ckl\mxsZy gZ \lhjhc rZjbd \ jZaZf_gvr_ZgZeh]bqguo\_ebqbg^ey\lhjh]hrZjbdZ25. GZ \ukhl_ h hlghkbl_evgh a_feb r = R3 + h; mapk = mg;24.
a1 =g 0 R32g 0 R32v2=⇒v=( R3 + h) ( R3 + h) 2R3 + h26.>ZghJ_r_gb_<hkihevam_fkynhjfmehc ihemq_gghc \R df ⋅ 106 fij_^u^ms_caZ^Zq_g0 fk2h df ⋅ 106 fg 0 R329,8 fk ⋅ (6,4 ⋅10 6 f 2v=v==≈R3 + h6,4 ⋅ 10 6 f + 3,6 ⋅10 6 f≈ fkHl\_lv ≈ fkGZclbv.27. vx = gt.vx, fk28.>Zghl d]t, cJ_r_gb_∆p = m∆v = mg∆t.60v0 = 0Ld∆v1 = ∆v2 jZ\ghmkdhj_ggh_^\b`_gb_lht k∆p1 = ∆p2 = ∆p d]⋅fk2 ⋅ 1 c d]⋅fk∆t = 1cGZclbv.Hl\_l∆p1 = ∆p2 = ∆p d]⋅fk29. Ld m ² ihklhyggZy \_ebqbgZ lh baf_g_gb_ bfimevkZ [m^_lhij_^_eylvky lhevdh baf_g_gb_f kdhjhklb Ih ]jZnbdm kf aZ^Zqm\b^ghqlh_keb∆t1 = ∆t2lhb ∆v1 = ∆v2bagZqbl∆p1 = ∆p2.30.