Физика-9кл-Перышкин-Гутник-2001-ГДZ (991173), страница 9
Текст из файла (страница 9)
< mkeh\byo k\h[h^gh]h iZ^_gby kdhjhklb h[hbo rZjbdh\ \ex[hc fhf_gl \j_f_gb [m^ml h^bgZdh\u b ke_^h\Zl_evghhlghr_gb_ bo bfimevkh\ [m^_l aZ\bk_lv ebrv hl hlghr_gby bofZkk LZd dZd ih mkeh\bx h[t_fu h^bgZdh\u hgh [m^_l jZ\ghρ f 8,9 ⋅ 10 3 d]f 3=≈ 3,3.ρ Z 2,7 ⋅10 3 d]f 3BlZd \ ex[hc fhf_gl \j_f_gb f_^guc rZjbd bf__l bfimevkijbf_jgh\ jZaZ[hevr_q_fZexfbgb_\uc31.^hklhedgh\_gbyX12hlghr_gbxiehlghkl_cf_^bb Zexfbgbyihke_klhedgh\_gby12X^hklhedgh\_gby12X2X>Zghv1x fkv2x fkv1′ x fkGZclbv.32.J_r_gb_Ih aZdhgm khojZg_gby bfimevkZ gZ hkv O):mv1x + mv2 x = mv1′ x + mv′2 x ⇒ v ′2 x = v1x + v 2 x − v1′ x =fk fk ±fk fkHl\_l v ′2 x fkihke_klhedgh\_gby1>Zghv1x fkv2x ±fkv1′ x = –fkGZclbv.J_r_gb_Ih aZdhgm khojZg_gby bfimevkZ gZ hkv O):mv1x + mv2 x = mv1′ x + mv′2 x ⇒ v ′2 x = v1x + v 2 x − v1′ x =fk ±fk±±fk fkHl\_l v ′2 x fk33.E=()()mv12x mv22x m 2mv ′ 2 mv ′22x m+= ⋅ v1x + v 22x ; E ′ = 1x += ⋅ v1′ x2 + v ′22x ;22222261v12x + v22x fk2 + ±fk2 = 0,05 f2k2; v1′x2 + v′22x ±fk2 ++ fk = 0,05 f k ⇒ v1x + v2 x = v1′ x + v′2 x ⇒ E = E′.22222234.
Ih ]jZnbdm hij_^_ey_f qlh L2 k b ν =11 =p=T 2cEx[Zy^jm]ZylhqdZbaf_gy_lkdhjhklvk lhc`_kZfhcqZklhlhc35. <havf_f aZ t fhf_gl dh]^Z hldehg_gb_ kj_^g_c lhqdbkljmgujZ\ghgmex=jZnbdg_]h^blky^ey^jm]bolhq_dkljmguldZfieblm^ZbohlebqgZhlZfieblm^ukj_^g_clhqdb>eykj_^gbolhq_dkljmg ^jm]bo Zjnhgl_f[he__g_]h^blkylZddZdhgbbf_xlbgu_qZklhludhe_[Zgbc;ff WfF36. GZ^h ^\Z h^bgZdh\uo dZf_jlhgZ jZkiheh`blv gZ g_dhlhjhfjZkklhygbb ^jm] hl ^jm]Z lZd qlh[u bo j_ahgZlhjgu_ ysbdb [uebh[jZs_gu ^jm] d ^jm]m ?keb l_i_jv m^Zjblv ih h^ghfm ba gbo bq_j_ag_dhlhjh_\j_fyaZ]emrblvijbdhkgm\rbkvjmdhcd g_fmlhfu mkeurbf a\md hl \lhjh]h dZf_jlhgZ < hkgh\_ ^Zggh]h hiulZe_`bly\e_gb_a\mdh\h]hj_ahgZgkZ37.
Ihevamykv ]jZnbdhf hij_^_ey_f Z ijb =p Zfieblm^ZmklZgh\b\rboky dhe_[Zgbc [m^_l [hevr_ q_f ijb =p [ qlh[uZfieblm^Z mklZgh\b\rboky dhe_[Zgbc [ueZ fZdkbfZevghc dZq_ebgZ^hih^lZedb\Zlvk qZklhlhc=p\kh[kl\_ggZy qZklhlZ dZq_e_cjZ\gZqZklhl_\ugm`^Zxs_ckbeul_=p38.>Zgh:J_r_gb_l kf fmg 0,002 d] ⋅ 9,8 fk 2==m ] d] Fl = Ff; mg = BIl ⇒ I =Bl4 ⋅10 −2 Le ⋅ 0,1 fB = 4 ⋅ 10-2 Le= 4,9 A.GZclbI.Hl\_l: I = 4,9 A.39.
< ^Zgghf kemqZ_ jhev p_gljhklj_fbl_evghc kbeu \uihegy_lkbeZ k dhlhjhc fZ]gblgh_ ihe_ ^_ckl\m_l ^\b`msbcky we_dljhgIhevamykvijZ\behfe_\hcjmdbhij_^_ey_fqlhwe_dljhg\e_l_e\dZf_jm\ lhqd_<.6240.>Zghv = 3 ⋅ 107 fk|_| = 1,6 ⋅ 10-19 Dem = 9,1 ⋅ 10-31 d]B = 8,5 ⋅ 10-3 LeJ_r_gb_Fpk = Ff;mv 2mv= B|_|v ⇒ r ==rB|e|9,1 ⋅ 10 −31 d] ⋅ 3 ⋅10 7 fk8,5 ⋅ 10 −3 Le ⋅ 1,6 ⋅10 -19 DeGZclbr.Hl\_lr = 2 ⋅ 10-2 f41. < j_amevlZl_βjZkiZ^Z 146 C → 147 N + -01 e .42.43.=27124413 Al+ 0 n → 11 N + 2 He .107+ 4−10745 Al+ 3+ 2−5 X → 3 N + 2 He⇒7 + 4−103+ 2−5 X= 2 ⋅ 10-2 f= 01 n ²g_cljhg63EZ[hjZlhjgu_jZ[hluEZ[hjZlhjgZyjZ[hlZBkke_^h\Zgb_jZ\ghmkdhj_ggh]h^\b`_gby[_agZqZevghckdhjhklb<ZjbZglP_evjZ[hlum[_^blvky\ jZ\ghmkdhj_gghfoZjZdl_j_^\b`_gby[jmkdZb hij_^_eblv_]hmkdhj_gb_b f]gh\_ggmxkdhjhklv< ^Zgghf\ZjbZgl_jZ[hlubkke_^mxloZjZdl_j^\b`_gby[jmkdZih gZdehgghc iehkdhklb K ihfhsvx ijb[hjZ bah[jZ`_ggh]h gZjbk Z mq_[gbdZ fh`gh baf_jylv fh^meb \_dlhjh\i_j_f_s_gbckh\_jr_gguo[jmkdhfaZijhf_`mldb\j_f_gbt1, t2 =2t1, t3 == 3t1,…, tn = nt1hlkqblu\Z_fuohlfhf_glZgZqZeZ^\b`_gby?kebaZibkZlv^ey^Zgguofh^me_c\_dlhjh\i_j_f_s_gbcbo\ujZ`_gbyat 2 a (3t1 )at12at 2a (2t1 )2232s1 , s3 = 3 =s3 ,…,, s 2 = 2 ====2222222at 2 a (nt1 )2 n 2sn = n =s1 ,=222lhfh`ghaZf_lblvke_^mxsmxaZdhghf_jghklvs1 : s2 : s3 : … : sn = 12 : 22 : 32 :…: n2 = 1 : 4 : 9 :…: n2.?keb wlZ aZdhghf_jghklv \uihegy_lky ^ey baf_j_gguo \ jZ[hl_fh^me_c \_dlhjh\ i_j_f_s_gbclh wlhb [m^_l ^hdZaZl_evkl\hf lh]hqlh ^\b`_gb_ [jmkdZ ih gZdehgghc iehkdhklb y\ey_lkyjZ\ghmkdhj_ggufIjbf_j\uiheg_gbyjZ[hlu.AZ^Zgb_ Bkke_^h\Zgb_ oZjZdl_jZ ^\b`_gby [jmkdZ ih gZdehgghciehkdhklb22t, c00,020,040,060,080,100,120,140,160,180,200,220,240,260,280,30sff0137152436506582102126146170198227s1 =<uqbke_gby.sss 2 3 ffs7 ff15 ff24 ff== 3, 3 == 7, 4 == 15, 5 == 24,s1 1 ffs1 1 ffs1 1 ffs11 ff64s 6 36 ffsss50 ff65 ff82 ff== 36, 7 == 50, 8 == 65, 9 ==82,s11 ffs11 ffs11 ffs11 ffs 11 126 ffs10 102 ffss146 ff== 102,== 126, 12 == 146, 13 =ffffs11 ff1s1s1s11ss170 ff198 ff227 ff= 170, 14 == 198, 15 == 227.1 ffs11 ffs11 ffHlkx^ZgZoh^bfs1 : s2 : s3 : s4 : s5 : s6 : s7 : s8 : s9 : s10 : s11 : s12 : s13 : s14 : s15 == 1 : 3 : 7 : 15 : 24 : 36 : 50 : 65 : 82 : 102 : 126 : 146 : 170 : 198 : 227.WlZ aZdhghf_jghklv g_ hq_gv kbevgh hlebqZ_lky hl l_hj_lbq_kdhcaZdhghf_jghklb ^ey jZ\ghmkdhj_ggh]h ^\b`_gby LZdbf h[jZahffh`gh kqblZlv qlh ^\b`_gb_ [jmkdZ ih gZdehgghc iehkdhklby\ey_lkyjZ\ghmkdhj_ggufAZ^Zgb_ Hij_^_e_gb_mkdhj_gby^\b`_gby[jmkdZ2sMkdhj_gb_[m^_f\uqbkeylvihnhjfme_a = 2 .t2 ⋅ 0,102 ft10 = 0,2 c; s10 = 102 ff = 0,102 f; a1 == 5,1 f/k2.2(0,2 k)2 ⋅ 0,227 ft15 = 0,3 c; s15 = 227 ff = 0,227 f; a1 =≈ 5,04 f/k2.(0,3 k)2=a1 + a 2 5,1 fk 2 + 5,04 fk 2fk2.=22AZ^Zgb_ Hij_^_e_gb_ f]gh\_gghc kdhjhklb [jmkdZ \ jZagu_fhf_glu \j_f_gb b ihkljh_gb_ ]jZnbdZ aZ\bkbfhklb f]gh\_gghckdhjhklbv hl\j_f_gbt.AgZq_gb_f]gh\_gghckdhjhklb[m^_f\uqbkeylvihnhjfme_v = at.t = 0,1 c; v fk2 ⋅ k fkt = 0,2 c; v fk2 ⋅ k fkt = 0,3 c; v fk2 ⋅ k fk=jZnbdaZ\bkbfhklbf]gh\_gghckdhjhklbv hl\j_f_gbt.akj =65v, fc t, c>hihegbl_evgh_ aZ^Zgb_ Ihkljh_gb_ ]jZnbdZ aZ\bkbfhklbdhhj^bgZlu x [jmkdZ hl \j_f_gb t.
x0 = 0, t0 = 0, xi(ti) = si, i =1,2,3,…,15.x, ff<ZjbZglP_ev jZ[hlu hij_^_eblv mkdhj_gb_ ^\b`_gby rZjbdZ b _]hf]gh\_ggmxkdhjhklvi_j_^m^Zjhfh pbebg^j>\b`_gb_ rZjbdZ ih gZdehgghfm `_eh[m y\ey_lkyjZ\ghmkdhj_gguf ?keb fu hlimklbf [_a gZqZevghc kdhjhklbrZjbd b baf_jbf ijhc^_ggh_ bf jZkklhygb_ s ^h klhedgh\_gby kpbebg^jhf b \j_fy t hl gZqZeZ ^\b`_gby ^h klhedgh\_gby lh fu2sfh`_fjZkkqblZlv_]hmkdhj_gb_ihnhjfme_a = 2 .tAgZymkdhj_gb_afufh`_fhij_^_eblvf]gh\_ggmxkdhjhklvv ihnhjfme_v = at.Ijbf_j\uiheg_gbyjZ[hlu.Qbkehm^Zjh\f_ljhghfZn3JZkklhygb_sf<j_fy^\b`_gbyt, c0,91,5t, cMkdhj_gb_a=2st2fk0,82F]gh\_ggZykdhjhklvv = atfk1,266<uqbke_gby.t = 0,5 c ⋅ 3 = 1,5 c; a =2 ⋅ 0,9 f(1,5 k )2fk2; v fk2 ⋅ k fkEZ[hjZlhjgZyjZ[hlZBaf_j_gb_mkdhj_gbyk\h[h^gh]hiZ^_gbyP_ev jZ[hlu baf_jblv mkdhj_gb_ k\h[h^gh]h iZ^_gby kihfhsvxijb[hjZ^eybamq_gby^\b`_gbyl_eK\h[h^gh_ iZ^_gb_ l_eZ y\ey_lky jZ\ghmkdhj_gguf ^\b`_gb_f?keb fu hlimklbf [_a gZqZevghc kdhjhklb dZdhcgb[m^v ]jma gZmklZgh\d_hk\h[h`^Z_faZ`bfb baf_jbfijhc^_ggh_bfjZkklhygb_s b \j_fy taZdhlhjh_ [ueh ijhc^_gh wlh jZkklhygb_ lh fu fh`_f2sjZkkqblZlvmkdhj_gb_k\h[h^gh]hiZ^_gbyihnhjfme_g = 2 .tIjbf_j\uiheg_gbyjZ[hlu.<j_fy^\b`_gbyt =nT, c0,28<uqbke_gby.ImlvsffImlvsf4000,4n = 14; t = 14 ⋅ 0,02 c = 0,28 c; gwdki =2 ⋅ 0,4 f(0,28 k )2Mkdhj_gb_k\h[h^gh]hiZ^_gbyg = 2s/t2fk2≈fk2.∆g = |gwdki – gl_hj _ _fk2 ±fk2_ fk2.∆g0,4 fk 2⋅ 100% =⋅100% ≈ 4,1 %.g9,8 fk 2EZ[hjZlhjgZyjZ[hlZBkke_^h\Zgb_aZ\bkbfhklbi_jbh^Zb qZklhluk\h[h^guodhe_[Zgbcgblygh]hfZylgbdZhl_]h^ebguP_evjZ[hlu\uykgblvdZdaZ\bkyli_jbh^b qZklhlZk\h[h^guodhe_[Zgbcgblygh]hfZylgbdZhl_]h^ebguIjbbaf_g_gbb^ebgugblygh]hfZylgbdZf_gy_lky_]hqZklhlZbi_jbh^ < ^Zgghc jZ[hl_ fu ^he`gu hij_^_eblv wlm aZ\bkbfhklvI_jbh^ b qZklhlm hij_^_ey_f ke_^mxsbf h[jZahf HldehgbfrZjbdfZylgbdZhliheh`_gbyjZ\gh\_kbygZg_[hevrmxZfieblm^mb aZk_q_f \j_fy t \ l_q_gb_ dhlhjh]h fZylgbd kh\_jrbl N .dhe_[Zgbc Lh]^Z i_jbh^ b Zfieblm^m fh`gh ihkqblZlv ihnhjfmeZf67t1 N, ν= = .NT tBaf_jyy i_jbh^ b qZklhlm ijb jZaguo agZq_gbyo ^ebgu fZylgbdZful_fkZfufihemqZ_faZ\bkbfhklvi_jbh^Zb qZklhluhl^ebguIjbf_j\uiheg_gbyjZ[hlu.T= hiulZNba\_elkfNt, cT, cν, =p12345530130,432,312030270,91,114530401,330,758030531,770,5712530672,230,45Ba ^Zgguo \ lZ[ebp_ fh`gh aZf_lblv lZdmx aZdhghf_jghklv q_f[hevr_ ^ebgZ fZylgbdZ l_f [hevr_ i_jbh^ b f_gvr_ qZklhlZ bgZh[hjhl>hihegbl_evgh_aZ^Zgb_.P_ev aZ^Zgby \uykgblv dZdZy fZl_fZlbq_kdZy aZ\bkbfhklvkms_kl\m_lf_`^m^ebghcfZylgbdZb i_jbh^hf_]hdhe_[ZgbcT2≈2T1T3≈3T1T4 ≈ 4T1T5≈5T1l2=4l1l3=9l1l4= 16l1l 2 = 25l1Ba ^Zgguo \ lZ[ebp_ ohjhrh ijhkfZljb\Z_lky k\yav f_`^m i_jbh^hfdhe_[ZgbcfZylgbdZb _]h^ebghcb Tk=T1lkl1]^_k fh`_lijbgbfZlvEZ[hjZlhjgZyjZ[hlZBamq_gb_y\e_gbywe_dljhfZ]gblghcbg^mdpbbP_evjZ[hlubamqblvy\e_gb_we_dljhfZ]gblghcbg^mdpbbDZd ba\_klgh y\e_gb_ we_dljhfZ]gblghc bg^mdpbb aZdexqZ_lky\ \hagbdgh\_gbb we_dljbq_kdh]h lhdZ \ aZfdgmlhf ijh\h^gbd_ ijbbaf_g_gbb fZ]gblgh]h ihlhdZ ijhgbau\Zxs_]h ho\Zq_ggmxijh\h^gbdhfiehsZ^vIjbf_j\uiheg_gbyjZ[hlu.1.
K[hjdZmklZgh\dbjbkmq_[gbdZ2. < i_j\hfhiul_bg^mdpbhgguclhd\hagbdZe\ dZlmrd_ \ kemqZ_dh]^Z fZ]gbl ^\b]Zeky hlghkbl_evgh dZlmrdb Ijb lhjfh`_gbbfZ]gblZ kbeZ bg^mdpbhggh]h lhdZ j_adh \hajZklZeZ b iZ^ZeZ ^hgmeydh]^ZfZ]gblhklZgZ\eb\Zekyihdhbeky683. Baf_g_gb_ fZ]gblgh]h ihlhdZ y\ey_lky ijbqbghc \hagbdgh\_gbybg^mdpbhggh]hlhdZL_fZ]gblgucihlhdΦijhgbau\ZxsbcdZlmrdmf_gyeky\f_kl_k bg^mdpbhgguflhdhfl_\h\j_fy^\b`_gbyfZ]gblZ4. Bg^mdpbhgguc lhd \hagbdZe \ dZlmrd_ ijb baf_g_gbbfZ]gblgh]hihlhdZijhgbau\Zxs_]hwlmdZlmrdm5. Ijbijb[eb`_gbbfZ]gblZd dZlmrd_ fZ]gblguc ihlhd f_gyekyld fZ]gblgucihlhd aZ\bkbl hl fh^mey \_dlhjZ fZ]gblghcUbg^mdpbb B fh^mev wlh]h \_dlhjZ g_ ihklhyg_g ld fZ]gblgh_ihe_ihklhyggh]hfZ]gblZg_h^ghjh^gh6.
GZijZ\e_gb_ bg^mdpbhggh]h lhdZ [m^_l jZaebqguf ijbijb[eb`_gbbfZ]gblZd dZlmrd_b m^Ze_gbb_]hhlg__7. Q_f [hevr_ kdhjhklv ^\b`_gby fZ]gblZ hlghkbl_evgh dZlmrdbl_f [hevr_ fZ]gblguc ihlhd Φ Z ke_^h\Zl_evgh b agZq_gb_bg^mdpbhggh]hlhdZ8. K[hjdZmklZgh\dbjbkmq_[gbdZ9. Bg^mdpbhgguclhd\hagbdZ_l\ kemqZyoZb \10. FZ]gblgucihlhdf_gy_lky\ kemqZyoZb \11.
<hagbdgh\_gb_ we_dljbq_kdh]h lhdZ \ fh^_eb ]_g_jZlhjZ jbkmq_[gbdZBg^mdpbhgguclhd\hagbdZ_l\ jZfd_\jZsZxs_cky\ fZ]gblghf ihe_ \ke_^kl\b_ baf_g_gby fZ]gblgh]h ihlhdZy\e_gb_we_dljhfZ]gblghcbg^mdpbbEZ[hjZlhjgZyjZ[hlZBamq_gb_^_e_gbyy^_jmjZgZihnhlh]jZnbyflj_dh\P_ev jZ[hlu m[_^blvky \ kijZ\_^eb\hklb aZdhgZ khojZg_gbybfimevkZgZijbf_j_^_e_gbyy^_jmjZgZIjbf_j\uiheg_gbyjZ[hlu.AZ^Zgb_Y^jhmjZgZijbaZo\Zl_g_cljhgZjZa^_ey_lkyijbf_jghgZ^\_jZ\gu_qZklbdhlhju_gZau\ZxlkyhkdhedZfb^_e_gbyIjbwlhfhkdhedb jZae_lZxlky \ ijhlb\hiheh`gu_ klhjhgu Wlh fh`ghh[tykgblv gZ hkgh\_ aZdhgZ khojZg_gby bfimevkZ Bfimevk y^jZmjZgZ ^h aZo\ZlZ g_cljhgZ ijZdlbq_kdb jZ\_g gmex Ijb aZo\Zl_g_cljhgZy^jhihemqZyhlg_]hg_dhlhjucbfimevkjZkdZeu\Z_lkygZ^\_ jZae_lZxsboky qZklb fZkkZfb m1 b m2 ?keb aZibkZlv aZdhgUUkhojZg_gby bfimevkZ 0 = m1v1′ + m2 v ′2 lh kjZam \b^gh qlh kdhjhklbh[jZah\Z\rbokyhkdhedh\ijhlb\hiheh`ghgZijZ\e_gu^jm]^jm]mbke_^h\Zl_evghqZklbpujZae_lZxlky\ ijhlb\hiheh`gu_klhjhguAZ^Zgb_ .
92 U + 0 n → 56 Ba + Z X + 2 0 n < kbem aZdhgZ khojZg_gbyaZjy^ZaZibr_f Z + 2 ⋅ Hlkx^ZihemqZ_fZ IhlZ[ebp_>BF_g^_e__\Zhij_^_ey_fqlhwlhy^jhdjbilhgZ69EZ[hjZlhjgZyjZ[hlZBamq_gb_lj_dh\aZjy`_gguoqZklbpih ]hlh\ufnhlh]jZnbyfP_evjZ[hluh[tykgbloZjZdl_j^\b`_gbyaZjy`_gguoqZklbpIjbf_j\uiheg_gbyjZ[hlu.AZ^Zgb_ Lj_db qZklbp ^\b`msboky \ fZ]gblghf ihe_bah[jZ`_gugZjbkmq_[gbdZldgZwlbonhlh]jZnbyoboljZ_dlhjbbdjb\hebg_cguAZ^Zgb_ Z αqZklbpu ^\b]Zebkv ke_\Z gZijZ\h [ H^bgZdh\Zy^ebgZ lj_dh\ αqZklbp ]h\hjbl h lhf qlh hgb bf_eb h^bgZdh\mxwg_j]bx \ LhesbgZ lj_dZ mlhesZ_lky aZ kq_l lh]h qlhmf_gvrZeZkvkdhjhklvbaaZklhedgh\_gbck qZklbpZfbkj_^uAZ^Zgb_ Z JZ^bmk djb\bagu f_gyeky aZ kq_l lh]h qlhmf_gvrZeZkv kdhjhklv baaZ klhedgh\_gbc k fhe_dmeZfb \h^u [QZklbpu ^\b]Zebkv kijZ\Z gZe_\h baaZ lh]h qlh lhesbgZ lj_dh\kijZ\ZgZe_\hm\_ebqb\Z_lkyAZ^Zgb_ Z We_dljhg ihklhyggh l_jye k\hx kdhjhklv aZ kq_lkhm^Zj_gbc k qZklbpZfb kj_^u b ihwlhfm lj_d bf__l nhjfmkibjZeb[We_dljhg^\b]Zeky\ gZijZ\e_gbbk]ms_gbykibjZebihmdZaZgghc \ur_ ijbqbg_ \ Lj_d gZ jbk ^ebgg__ ihlhfm qlhhg\ f_gvr_ckl_i_gb\aZbfh^_ckl\m_lk kj_^hc70.