3 (971660)

Файл №971660 3 (Теория к экзамену)3 (971660)2015-05-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Билет №3

Определение 2.3. Линейное пространство E называют евклидовым пространством,

если в этом пространстве задано скалярное умножение, т.е. закон или правило, согласно которому каждой паре векторов x, y G E поставлено в соответствие действительное число (x, y), называемое скалярным произведением. При этом выполняются следующие аксио­мы скалярного умножения:

а) (x, y) = (y, x);

б) (x + y, z) = (x, z) + (y, z);

в) (Ax, y) = A (x, y), A G R;

г) (x, x) ^ 0, причем (x, x) = 0 лишь в случае, когда x = 0.


Наглядными примерами евклидовых пространств могут служить пространства:

  • размерности 1 (вещественная прямая)

  • размерности 2 (евклидова плоскость)

  • размерности 3 (евклидово трехмерное пространство)

  • Евклидово пространство можно считать современной интерпретацией и обобщением (так как оно допускает размерности больше трех) классической (Евклидовой) геометрии.

Определение. Система ненулевых элементов xj ,... , xn евклидова

пространства называется ортонормированной системой, если все элементы этой системы попарно ортогональны и норма каждого элемента равна

единице, т.е. (xt,xj)=J1, \ j, i = 1,2,...,n, j = 1,2,...,n.

Теорема 2.5. Любая ортогональная(ортонормированная) система ненулевых векторов линейно независима.

Ч Рассмотрим произвольную ортогональную систему ненулевых векторов ei, ... , em. Предпо­ложим, что для некоторых действительных коэффициентов а1, ... , am выполняется равенство

a1e1 + ... + amem = 0. (2.7)

Умножим это равенство скалярно на какой-либо вектор e^:

(a1e1 + ... + a^e^ + ... + amem, ei) = (0, e^).

В силу свойства 2.3 скалярного произведения правая часть полученного равенства равна нулю, и мы, преобразуя левую часть в соответствии со свойством 2.4, получаем

a1 (e1, ei) + ... + ai (ei, ei) + ... + am (e1, ei) = 0.

Так как система векторов ортогональна, то все слагаемые слева, кроме одного, равны нулю, т. е.

ai (ei, ei) = 0. (2.8)

Так как вектор ei ненулевой, то (ei, ei) = 0 (аксиома 4 скалярного умножения). Поэтому из (2.8) следует, что ai = 0. Индекс i можно было выбирать произвольно, так что на самом деле все коэффициенты ai являются нулевыми. Мы доказали, что равенство (2.7) возможно лишь при нулевых коэффициентах, а это, согласно определению 1.2, означает, что система векторов e1, ..., em линейно независима.

Характеристики

Тип файла
Документ
Размер
38 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее