УТС_5 (962814)

Файл №962814 УТС_5 (Лекционный курс)УТС_5 (962814)2017-12-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

7


5. ПЕРЕДАТОЧНЫЕ ФУНКЦИИ И УРАВНЕНИЯ ДИНАМИКИ ЗАМКНУТЫХ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ (САР)

5.1. Главная передаточная функция. Передаточные функции по возмущающему воздействию и для ошибки (рассогласования)

Используя структурные преобразования (см. раздел 4), структурную схему практически любой линейной или линеаризованной САР (САУ) можно привести к виду:

Рис. 5.1


x (t) X (s) x (t) - управляющее воздействие;

y (t) .  Y (s) f (t) – возмущающее воздействие;

f (t)  F (s) y (t) – регулируемая величина (выходное воздействие).

(t)  E (s)

Определение. Если единичная обратная связь охватывает все элементы (звенья) САР – она называется главной.

Если главная обратная связь отсутствует - САР считается разомкнутой.

Передаточная функция W(s) может быть любой сложности (т.е. содержать местные обратные связи, параллельные и последовательные цепи и т.д.).

Возмущающих воздействий может быть несколько и приложены они могут быть в любом месте структурной схемы.

Передаточную функцию W(s), которую в Теории Управления называют передаточной функцией разомкнутой САР, будем представлять в следующем виде (для единообразия):

(5.1)

где К – общий коэффициент усиления; N(s), L(s) – полиномы по степеням переменной s, причем свободные члены в них равны 1 (единице).

Учитывая, что САР линейна или линеаризована, разделим на структурной схеме каналы прохождения управляющего и возмущающего воздействий  Выделим в отдельное звено (может быть и очень сложное) ту часть системы, через которую проходит возмущающее воздействие f (t)  обозначим ее через M(s)  Структурная схема САР принимает вид:

Рис. 5.2

В Теории Управления используют 3 основных передаточных функций замкнутой САР:

  • главная передаточная функция Ф(s);

  • передаточная функция по возмущающему воздействию Фf (s) ;

  • передаточная функция для ошибки (рассогласования )

Рассмотрим более подробно вышеупомянутые передаточные функции.

Главная передаточная функция (передаточная функция по управляющему воздействию)  Дадим математическое определение этой передаточной функции 


Ф (s) = , (5.2)


f(t) = 0

если  выведем формулу для Ф(s)

x(t )  0

Поскольку главная передаточная функция определена соотношением (5.2) при условии, что возмущающее воздействие f(t) = 0, то  y(t) = y1(t)  «обойдем» по контуру 

Y(s) = E(s) W(s) = X(s) – Y(s) W(s)   1 + W(s) Y(s) = W(s) X(s) ;


Ф(s) = = (5.3)


Примечание. Формула (5.3) совпадает с формулой для передаточной функции цепи с местной единичной обратной связью (см. раздел 4 – «Структурные преобразования»).

Подставляя вместо W(s) ее выражение через полиномы N(s) и L(s)


Ф(s) = (5.4)


Анализ выражение (5.3) показывает, что свойства главной передаточной функции замкнутой САР однозначно определяются свойствами разомкнутой САР, т.е. через полиномы N(s) и L(s).

Передаточная функция замкнутой САР по внешнему возмущающему воздействию

Дадим математическое определение рассматриваемой передаточной функции 

Фf (s) = , (5.5)

Очевидно, что у(t) = y1(t) + y2(t)

Учитывая, что х(t) = 0; (t) = 0 – y(t) = - y(t);  «обойдем» по контуру:

Y(s) = Y1(s) +Y2(s) = E(s) ∙W(s) + M(s) F(s) = W(s) -Y(s) + M(s) F(s) = M(s) F(s) - W(s) Y(s);

[1 + W(s)]  Y(s) = M(s) F(s);  Фf (s) =

Фf (s) = = , (5.6)

г де вид полинома R(s) - зависит от места приложения внешнего возмущающего воздействия;

Внимание. Формулы (5.4) и (5.6) имеют общие знаменатели, а именно: D(s) = L(s) + K N(s) !!!

Передаточная функция замкнутой САР для ошибки (рассогласования)

Данная передаточная функция определяется следующим выражением:

Ф (s) = , (5.7)

Сделаем вывод соответствующих формул, выполнив «обход» по контуру 

E(s) = X(s) - Y(s) = X(s) - E(s)W(s);  [1 + W(s)]  E(s) = X(s); 

Ф (s) = = , т.к. Ф(s) = . (5.8)

Подставляя в формулу (5.8) значение W(s) через полиномы N(s) и L(s), имеем 

Ф (s) = . (5.9)

Опять замечаем, что знаменатель передаточной функции Ф (s) равен полиному D(s)следовательно, характерным признаком передаточных функций замкнутой САР является общность знаменателей ! ! !.

В Теории Управления выражение D(s) = L(s) + KN(s) имеет «собственное» название: характеристический полином замкнутой САР.

Если на САР воздействует одновременно два воздействия: x(t) и f(t), то 

Y(s) = Ф(s)X(s) + Фf (s)F(s)  но об этом в следующем подразделе...

    1. Уравнения динамики замкнутой САР.

Как указывалось в подразделе 5.1, любую замкнутую САР можно привести к виду :

f (t)

M (s)

F (s)

x (t)  (t) y 2 (t)

W (s) + y (t)

X (t) E (t) y 1 (t) Y (s)


Выведены соотношения для 3-х основных передаточных функций замкнутой САР 

Ф(s), Фf (s), Ф(s)  если на САР одновременно воздействуют управляющее воздействие (x(t)) и возмущающее воздействие ( f(t) ), 


Y (s) = + ( 5.2.1 )

Y x(s) Y f (s)


Подставляя значения Ф (s) и (s) через полиномы N(s) и L(s) разомкнутой САР 

Y(s) = ,

где D(s) = L(s) + KN(s) - характеристический полином


D(s)Y(s) = KN(s) X(s) +R(s) F(s) ( 5.2.2 )


динамическое уравнение замкнутой САР в изображениях.

Переходя к оригиналам 


D(p) y(t) = NN(p) x(t) + R(p) f(t) - ( 5.2.3 )


символическая форма записи обыкновенного дифференциального уравнения замкнутой САР.

Решение уравнения ( 5.2.3 ) – обычный алгоритм 

y (t) = y соб (t) + y вын (t),

где yсоб(t) - решение однородного дифференциального уравнения  D(p) y(t) = 0;

yвын(t) – вынужденная часть решения (частное решение), определяемая правой частью уравнения ( 5.2.3 ).

Решения однородного уравнения замкнутой САР:

D(p) y(t) = 0 :  a n  y ( n ) + a n-1  y ( n-1 ) + …+ a 1  y 1 + a 0  y = 0 

записываем соответствующее характеристическое уравнение:

D() = 0  a n   n + a n- i   n - 1 + …+ a 1   + a 0 = 0 

находим корни степенного уравнения   j

Yсоб(t) = j e j ,

если все корни уравнения разные.

Если есть совпадающие корни характеристического уравнения, то формула для yсоб (t) изменится (см .ранее).

Обычно yвын (t) находят по виду правой части уравнения (5.2.3) или, используя другие методы ( например, метод вариаций постоянных ).

Необходимо отметить, что порядок дифференциального уравнения (5.2.3) равен «n», т.е. такой же, как и у разомкнутой САР 

L (p) y (t) = K N(p) x(t)

если нет возмущающего воздействия, т.к. порядок дифференциального оператора L(p) обычно значительно выше, чем N(p).

По аналогии с выводом уравнения (5.2.3) можно получить уравнение динамики для рассогласования (t) 


E (s) = Ф (s) X (s) - Ф f (s) F (s) ( 5.2.4 )

 подставляя значения Ф(s), Фf(s)

E(s) =


D(s) E(s) = L(s) X(s) – R(s) F(s) (5.2.5)


- уравнение динамики замкнутой САР для рассогласования (ошибки) при наличии управляющего и возмущающего воздействий.

Особенностью данного уравнения (5.2.5) является то, что левая часть его практически совпадает с левой частью (5.2.2), в то время, как порядок правой части заметно выше , т.к. порядок многочленов D (s) и L (s) - одинаков.

Это означает, что внешние воздействия x(t) и f(t) влияют на (t) более сильным образом .


D(p) (t) = L(p) x(t) – R(p) f(t) ( 5.2.6 )


- дифференциальное уравнение замкнутой САР для ошибки.

Способы решения уравнения ( 5.2.6 ) такие же, как и для уравнения ( 5.2.3 ) .

5.3 Частотные характеристики замкнутой САР.

Наибольшее распространение при анализе замкнутых САР имеет АФЧХ замкнутой САР по управляющему воздействию 


Ф(i) = Ф(s)s = iw = , ( 5.3.1 )


где W(i ) = .

Учитывая, что W(i) = u() + i  () - комплексное число, по аналогии имеем:


Ф (i) = P () + i Q () , ( 5.3.2 )

где P() = Re[ Ф(i) ] и Q() = Im[Ф(i)] .


P () Q ()





На этих рисунках представлен «примерный» вид зависимостей P ()и Q() для «какой-то» замкнутой САР  причем

P() - четная функция, т.е. P() = P(-); Q() - нечетная функция, т.е. Q() = -Q(-).

Если известны частотные свойства разомкнутой САР, то можно определить частотные свойства замкнутой САР  воспользуемся показательной формой для АФЧХ 

W (i) = А () е i () ,

где А() - амплитуда (модуль) и () – сдвиг фазы (фаза).

Подставляя это в (5.3.1), имеем

Ф(i) = Азамк() е I 3() =


, ( 5.3.3 )


учитывая, что еi = cos() - isin() 


. ( 5.3.4 )


Приравнивая чисто вещественные и чисто мнимые части, имеем 


( 1 ) ( 5.3.5 )

( 2 ) .


Задачей преобразований является  найти:

А3() = f1[ A(), () ]; 3() = f2[ A(), () ]

Разделив (2) на (1)  tg3() =


3амкнутой() = arctg , ( 5.3.6 )


где j – определяется из графика Ф(i) .

Процедура получения выражения для А3() – сложнее  возведем оба уравнения системы (5.3.5) в квадрат 

;

;

  • складывая эти уравнения 


А3() = ; ( 5.3.7 )


Аналогичным образом можно выразить, например, P() и Q() - характеристики замкнутой САР через u() и () - характеристики разомкнутой САР  существуют номограммы Солодовникова, Никольса для определения частотных свойств замкнутой САР  они называются диаграммами замыкания, но в настоящее время благодаря достижениям вычислительной техники – компьютеров, эти диаграммы практически полностью потеряли свою актуальность.

Характеристики

Тип файла
Документ
Размер
163,5 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее