30-40_рк1 (960717), страница 2

Файл №960717 30-40_рк1 (Ответы к рубежным контролям) 2 страница30-40_рк1 (960717) страница 22017-12-26СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Следующие операции выполняются для значений от до , чтобы получить адреса перестановки . В уравнениях ниже, обозначает наибольшее целое число, меньше или равное , и обозначает одно из следующих четырёх простых чисел:

Интерпретация перестановки чисел такова, что -й бит, переданный перемежителем, является -м битом входного информационного блока. Деперемежитель осуществляет запись принятого бита по вычисленному адресу.

Кодовая скорость[править | править вики-текст]

Кодовая скорость — отношение длины кодового блока на входе к длине преобразованного кодового блока на выходе кодера.

В отсутствие перфоратора (см. рис. 1) исходная последовательность мультиплексируется с последовательностями проверочных бит , образуя кодовое слово, подлежащее передаче по каналу. Тогда значение кодовой скорости на выходе турбо-кодера

Для увеличения кодовой скорости применяется выкалывание (перфорация) определённых проверочных битов выходной последовательности. Таким образом кодовая скорость возрастает до

, где , причём может быть дробным, если число оставшихся после перфорации проверочных бит не кратно .

Если учесть, что турбо-коды оперируют с блоками большой длины c , то , и кодовая скорость равна

Из приведённых формул видно, что с помощью перфоратора, выкалывая разное число проверочных бит, возможно регулирование кодовой скорости. То есть можно построить кодер, адаптирующийся к каналу связи. При сильном зашумлении канала перфоратор выкалывает меньше бит, чем вызывает уменьшение кодовой скорости и рост помехоустойчивости кодера. Если же канал связи хорошего качества, то выкалывать можно большое число бит, вызывая рост скорости передачи информации[6].

33. Коды коррекции ошибок. LDPC.

Код с малой плотностью проверок на чётность (LDPC-код от англ. Low-density parity-check code, LDPC-code, низкоплотностный код) — используемый в передаче информации код, частный случай блокового линейного кода с проверкой чётности. Особенностью является малая плотность значимых элементов проверочной матрицы, за счёт чего достигается относительная простота реализации средств кодирования.

Также называют кодом Галлагера, по имени автора первой работы на тему LDPC-кодов.

Предпосылки

В 1948 году Шеннон опубликовал свою работу по теории передачи информации. Одним из ключевых результатов работы считается теорема о передаче информации для канала с шумами, которая говорит о возможности свести вероятность ошибки передачи по каналу к минимуму при выборе достаточного большой длины ключевого слова — единицы информации передаваемой по каналу[1].

При передаче информации её поток разбивается на блоки определённой (чаще всего) длины, которые преобразуются кодером (кодируются) в блоки, называемыми ключевыми словами. Ключевые слова передаются по каналу, возможно с искажениями. На принимающей стороне декодер преобразует ключевые слова в поток информации, исправляя (по возможности) ошибки передачи.

Теорема Шеннона утверждает, что при определённых условиях вероятность ошибки декодирования (то есть невозможность декодером исправить ошибку передачи) можно уменьшить, выбрав большую длину ключевого слова. Однако, данная теорема (и работа вообще) не показывает, как можно выбрать большую длину, а точнее как эффективно организовать процесс кодирования и декодирования информации с большой длиной ключевых слов. Если предположить, что в кодере и декодере есть некие таблицы соответствия между входным блоком информации и соответствующим кодовым словом, то такие таблицы будут занимать очень много места. Для двоичного симметричного канала без памяти (если говорить упрощённо, то на вход кодера поступает поток из нулей и единиц) количество различных блоков составляет 2n, где n — количество бит (нулей или единиц) которые будут преобразовываться в одно кодовое слово. Для 8 бит это 256 блоков информации, каждый из которых будет содержать в себе соответствующее кодовое слово. Причём кодовое слово обычно большей длины, так как содержит в себе дополнительные биты для защиты от ошибок передачи данных. Поэтому одним из способов кодирования является использование проверочной матрицы, которые позволяют за одно математическое действие (умножение строки на матрицу) выполнить декодирование кодового слова. Аналогичным образом каждой проверочной матрице соответствует порождающая матрица, аналогичным способом одной операцией умножения строки на матрицу генерирующей кодовой слово.

Таким образом, для сравнительно коротких кодовых слов кодеры и декодеры могут просто содержать в памяти все возможные варианты, или даже реализовывать их в виде полупроводниковой схемы. Для большего размера кодового слова эффективнее хранить порождающую и проверочную матрицу. Однако, при длинах блоков в несколько тысяч бит хранение матриц размером, соответственно, в мегабиты, уже становится неэффективным. Одним из способов решения данной проблемы становится использования кодов с малой плотностью проверок на чётность, когда в проверяющей матрице количество единиц сравнительно мало, что позволяет эффективнее организовать процесс хранения матрицы или же напрямую реализовать процесс декодирования с помощью полупроводниковой схемы.

Первой работой на эту тему стала работа Роберта Галлагера «Low-Density Parity-Check Codes» 1963 года[2] (основы которой были заложены в его докторской диссертации 1960 года). В работе учёный описал требования к таким кодам, описал возможные способы построения и способы их оценки. Поэтому часто LDPC-коды называют кодами Галлагера. В русской научной литературе коды также называют низкоплотностными кодами или кодами с малой плотностью проверок на чётность.

Однако, из-за сложности в реализации кодеров и декодеров эти коды не использовались[3]. Лишь много позже, с развитием телекоммуникационных технологий, снова возрос интерес к передаче информации с минимальными ошибками. Несмотря на сложность реализации по сравнению с турбо-кодом, отсутствие преград к использованию (незащищённость патентами) сделало LDPC-коды привлекательными для телекоммуникационной отрасли, и фактически стали стандартом де-факто. В 2003 году LDPC-код, вместо турбо-кода, стал частью стандарта DVB-S2 спутниковой передачи данных для цифрового телевидения. Аналогичная замена произошла и в стандарте DVB-T2 для цифрового наземного телевизионного вещания[4].

LDPC-коды

LDPC-коды описываются низкоплотностой проверочной матрицей, содержащей в основном нули и относительно малое количество единиц. По определению, если каждая строка матрицы содержит ровно и каждый столбец ровно единиц, то код называют регулярным (в противном случае — нерегулярным). В общем случае количество единиц в матрице имеет порядок , то есть растёт линейно с увеличением длины кодового блока (количества столбцов проверочной матрицы).

Обычно рассматриваются матрицы больших размеров. Например, в работе Галлагера в разделе экспериментальных результатов используются «малые» количества строк n=124, 252, 504 и 1008 строк (число столбцов проверочной матрицы немного больше). На практике применяются матрицы с большим количеством элементов — от 10 до 100 тысяч строк. Однако количество единиц в строке или в столбце остаётся достаточно малым, обычно меньшим 10. Замечено, что коды с тем же количеством элементов на строку или столбец, но с большим размером, обладают лучшими характеристиками.

Важной характеристикой матрицы LDPC-кода является отсутствие циклов определённого размера. Под циклом длины 4 понимают образование в проверочной матрице прямоугольника, в углах которого стоят единицы. Отсутствие цикла длины 4 можно также определить через скалярное произведение столбцов (или строк) матрицы. Если каждое попарное скалярное произведение всех столбцов (или строк) матрицы не более 1, это говорит об отсутствии цикла длины 4. Циклы большей длины (6, 8, 10 и т. д.) можно определить, если в проверочной матрице построить граф, вершинами которого являются единицы, а рёбра — все возможные соединения вершин, параллельные сторонам матрицы (то есть вертикальные или горизонтальные линии). Минимальный цикл в этом графе и будет минимальным циклом в проверочной матрице LDPC-кода. Очевидно, что цикл будет иметь длину как минимум 4, а не 3, так как рёбра графа должны быть параллельны сторонам матрицы. Вообще, любой цикл в этом графе будет иметь чётную длину, минимальный размер 4, а максимальный размер обычно не играет роли (хотя, очевидно, он не более, чем количество узлов в графе, то есть n×k).

Описание LPDC-кода возможно несколькими способами:

• проверочной матрицей

двудольным графом

• другим графическим способом

• специальные способы

Последний способ является условным обозначением группы представлений кодов, которые построены по заданным правилам-алгоритмам, таким, что для повторного воспроизведения кода достаточно знать лишь инициализирующие параметры алгоритма, и, разумеется, сам алгоритм построения. Однако данный способ не является универсальным и не может описать все возможные LDPC-коды.

Способ задания кода проверочной матрицей является общепринятым для линейных кодов, когда каждая строка матрицы является элементом некоторого множества кодовых слов. Если все строки линейно-независимы, строки матрицы могут рассматриваться как базис множества всех кодовых векторов кода. Однако использование данного способа создаёт сложности для представления матрицы в памяти кодера — необходимо хранить все строки или столбцы матрицы в виде набора двоичных векторов, из-за чего размер матрицы становится равен бит.

Распространённым графическим способом является представление кода в виде двудольного графа. Сопоставим все строк матрицы нижним вершинам графа, а столбцов — верхним, и соединим верхние и нижние вершины графа, если на пересечении соответствующих строк и столбцов стоят единицы.

К другим графическим способам относят преобразования двудольного графа, происходящие без фактического изменения самого кода. Например, можно все верхние вершины графа представить в виде треугольников, а все нижние — в виде квадратов, после чего расположить рёбра и вершины графа на двухмерной поверхности в порядке, удобном для визуального понимания структуры кода. Например, такое представление используется в качестве иллюстраций в книгах Девида Маккея.

Вводя дополнительные правила графического отображения и построения LDPC-кода, можно добиться, что в процессе построения код получит определённые свойства. Например, если использовать граф, вершинами которого являются только столбцы проверочной матрицы, а строки изображаются многогранниками, построенными на вершинах графа, то следование правилу «два многогранника не разделяют одно ребро» позволяет избавиться от циклов длины 4.

При использовании специальных процедур построения кода могут использоваться и свои способы представления, хранения и обработки (кодирования и декодирования).

Построение кода[править | править вики-текст]

Характеристики

Тип файла
Документ
Размер
1,21 Mb
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее