Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект (960686), страница 4
Текст из файла (страница 4)
Если алгоритм «способен» решать определенный класс задач и воспроизведение алгоритма на вычислительной машине придает ей новые «способности», например способности к игре, к балансированию конвейерных линий, к подсчету потребностей и т. д., то не дает ли это основания Для предположения о том,
22
что и наблюдаемая нами деятельность головного Мозга также определяется' работой специфических алгоритмов?
Рядом ученых была высказана мысль о том, что в процессе эволюции наряду с развитием физических, химических систем, определяющих жизнедеятельность организма, использовались также те возможности для решения задач, которые объективно существуют в природе и которые реализуются в виде создания и работы алгоритмов.
В течение длительного периода времени ученые думали о том, каким образом возникает та удивительная целесообразность и то удивительное многообразие поведения человека и животных, которые мы наблюдаем в природе. Хорошо известно, что люди в каждой новой ситуации действуют по-разному и в одних и тех же условиях выбирают различные пути решения проблемы. Каким же образом такое бесконечное многообразие форм поведения может фиксироваться в работе нервных элементов? Каким образом одна нервная клетка или совокупность нервных клеток могут участвовать в столь различных видах деятельности, обеспечивая в конечном счете все специфические особенности и многообразие психической деятельности человека? Эта загадка казалась неразрешимой. Гипотеза об участии алгоритмов в работе мозга обладала в этом отношении некоторыми волшебными свойствами. Она объясняла то, что в течение многих столетий заводило в тупик даже великих мыслителей.
Намечалось простое решение. Один и тот же алгоритм решает целый класс задач. Если алгоритм воспроизводится на вычислительной машине, то вычислительная машина приобретает способность к «порождению» большого многообразия конкретного поведения. Например, если алгоритм реализован в вычислительной машине и лежит в основе способности к игре в шахматы, шашки, «побеждает чет», то в каждой ситуации его работа проявляется по-разному В то же самое время в основе формирования поведения системы в этом случае лежит одна четкая и относительно простая система детерминированных правил (при этом проявляется одно из замечательных свойств алгоритмов — свойство массовости).
23
На этой основе находит объяснение возможность формирования большого разнообразия целесообразного поведения Можно предположить, что на самом деле при работе нервных клеток и нервных центров это многообразие форм поведения не фиксируется. Головной мозг реализует только работу алгоритмов. А последние в процессе своей деятельности, в условиях, когда организм сталкивается с разными конкретными, ситуациями, продуцируют (воспроизводят) различные формы поведения. Создавалось впечатление, что найдены ключи к расшифровке одной из самых сокровенных и, казалось бы, неразрешимых загадок природы. Так, появилась и начала развиваться концепция об алгоритмах биологических систем, об алгоритмах работы мозга.
Хорошо известны те весьма совершенные формы адаптации, которые возникли в процессе эволюции. Сложность кровеносной системы, системы пищеварения, системы биохимических процессов организма давно уже стала предметом пристального внимания и глубокого исследования биологов. Почему же до спх пор физиологи проходили мимо возможностей, которые открываются в связи с функционированием алгоритмов? Ведь представление об алгоритмах существует более 1000 лет. Простой скачок от анализа математических проблем к проблемам изучения живых организмов был невозможен в течение длительного периода времени (многих столетий), хотя в этом случае не существовало никаких принципиальных трудностей. Только тогда, когда реализация алгоритмов начала осуществляться на вычислительных машинах и стали понятными те новые явления, которые возникают при этом, исследователи-биологи обратили на них внимание.
В настоящее время концепция алгоритмического анализа биологических систем находится в центре внимания многих исследователей. Ей посвящаются книги, семинары и научные конференции. В этом направлении успешно работают коллективы исследователей в Москве, Киеве, Ростове-на-Дону и других городах под руководством профессоров Н. М. Амосова, Н. Ф Суворова, А. Б. Когана и др. Эта концепция открыла новые широкие перспективы. Можно сказать, что она позволяла надеяться на раскрытие
24
таких тайн природы, которые ранее казались глубоко скрытыми в недрах организации живых систем.
Вместе с тем концепция об алгоритмах работы мозга выдвинула целый ряд новых весьма сложных проблем науки. В тот период, когда алгоритмы составляли предмет изучения математиков, главной задачей было их создание и использование. Сам процесс создания алгоритмов не стал предметом специального научного изучения, так как считалось, что алгоритм может открыть только математик, обладающий большими творческими способностями.
При изучении алгоритмов биологических систем необходимо было выяснить, как выявить те алгоритмы, которые уже существуют в работе мозга и которые были созданы в процессе эволюции. Задача эта весьма сложная. Трудность связана с описанными выше свойствами алгоритма, в частности со свойством массовости. Один и тот же алгоритм при своем функционировании приводит к большому разнообразию конкретных форм поведения. В каждой конкретной ситуации он проявляется "по-разному. Это замечательное свойство создавало существенные препятствия при изучении алгоритмов и ставило трудные проблемы перед исследователями. Особенности проявления алгоритма в различных условиях приводят к «маскировке» основной его структуры и закономерностей работы. Так, например, если наблюдать работу алгоритма игры в шахматы, реализованного на вычислительной машине, то можно убедиться в том, что в каждой конкретной новой ситуации игры он действует по-разному. Поэтому на основе анализа различных форм поведения очень трудно восстановить истинную природу алгоритма. Обычные методы исследования, например методы статистической обработки полученных данных, не оказываются в данном случае результативными. Алгоритм записан на специальном языке. Для того чтобы сформулировать правила его работы, нужно прежде всего открыть тот язык, те понятия более высокого уровня абстракции, которые составляют основу работы алгоритма.
Для более детального изучения этого явления были проведены специальные эксперименты. На вычислительной машине реализовывался тот или иной -
25
алгоритм игры, например алгоритм игры «побеждает чет». Затем испытуемому предлагалось провести исследование работы данной машины и выявить, на основании каких правил и принципов машина приобретает способности осуществлять успешную игру. При этом разрешалось проводить любые эксперименты и статистически обрабатывать данные. Однако такой эксперимент не давал положительных результатов. Можно было выявить некоторые корреляции между действиями вычислительной машины и специфическими особенностями возникающих в игре ситуаций и сделать некоторые выводы, но при внимательном рассмотрении выяснилось, что эти выводы не имеют под собой реальной основы. Они ошибочны и не приближают к пониманию основных механизмов деятельности, т. е. к раскрытию алгоритма. Они часто даже уводят в сторону от раскрытия истины.
Описанные эксперименты привели к весьма существенным и неожиданным выводам. Создавалось впечатление, что применяемые в настоящее время в биологии при изучении мозга методики исследования, основанные на постановке эксперимента и статистической обработке экспериментальных данных, в принципе не могут стать основой выявления алгоритма, а между тем часто именно алгоритм определяет сущность явления. Возникло предположение, что до сих пор исследователи не имели ключей для разгадки одной из важнейших тайн природы — раскрытия механизмов информационной деятельности.
Следующая категория трудностей была связана с тем, что алгоритм как целостная организация описывается на таком языке, который позволяет реализовать эту систему на различном физико-химическом субстрате. Субстрат может обеспечить работу различных алгоритмов, и в тоже самое время каждый алгоритм может быть реализован на различной физико-химической основе, т. е. сама организация субстрата не связана со спецификой организации и работы алгоритма, она только создает условия для его функционирования. Таким образом, изучение морфо-физиологических и физико-химических механизмов работы мозга также не могло привести к раскрытию алгоритмов. Между тем в течение многих десятков
20
лет исследователи пытались выявить принципы управления и переработки информации на основе изучения организации физических и химических систем. Ученые исходили из предположения о том, что если они изучают передачу возбуждения с одной нервной клетки на другую, реакции нейронов на различные, подаваемые извне сигналы, то они проводят анализ систем переработки информации. Они полагали, что последовательное развитие таких исследований, накопление новых фактов, использование все новых и новых более тонких и точных методических приемов в конечном итоге должно привести к полной расшифровке механизмов деятельности мозга, включая и работу информационных систем.
Исследования в области молекулярной биологии, генетики, эмбриологии основывались также на том, что анализ биохимических процессов (например, процессов синтеза белка) в конечном итоге раскроет информационную сущность явления. Молекулярная биология рассматривалась как определенный раздел биохимии. Поэтому в течение длительного периода времени не возникала необходимость в каких-либо дополнительных подходах к исследованию, поиску новы
х методов.
Анализ основных свойств алгоритмов обусловливал необходимость пересмотра описанных выше тенденций в развитии науки. Стало очевидным, что изучение субстрата информационной деятельности не обеспечивает полного анализа механизмов и, в частности, выявления алгоритмов. Для того чтобы понять работу механизмов, надо было выявить как закономерности работы алгоритмов, так и принципы организации субстрата, реализующего их деятельность.
Существенные трудности при выявлении алгоритмов объяснялись также их свойством целостности, тесно связанным с другими свойствами: массовости и результативности. Дело в том, что часто при исследовании явлений и процессов обнаружение хотя бы одного звена целостной системы уже приводит к возможности оценки его результативности. Становится понятным, что избран правильный путь исследования. Другая картина возникает при изучении алгоритмов. В данном случае обнаружение какого-либо
27
одного правила или одной закономерности еще не позволяет определить, как будет работать система в целом. Остается непонятным, приближает ли раскрытие этой закономерности к разгадке основной тайны явления природы, т. е. к раскрытию алгоритма, или нет. Пока не выявлен весь алгоритм, ничего нельзя сказать об эффективности самого пути исследования. Эти особенности работы алгоритма приводили к тому, что обычные методы, основанные на разделении изучаемой системы на части на последовательном детальном исследовании отдельных компонентов, а затем и их частей, оказывались малорезультативными. Нужно было каким-то образом выявить все компоненты, объединить их в целое, а потом проверять эффективность целостной системы. Только после этого можно сказать, правильно или неправильно было проведено исследование.
Возникали также трудности, связанные со спецификой алгоритма как динамической системы. Мы уже говорили о том, что алгоритм приобретает свои замечательные свойства только после того, как он реализуется на некотором физико-химическом субстрате специального типа (например, на ЭВМ). До этого алгоритм, записанный на бумаге, может казаться «мертвым», неработоспособным, т. е. никак не проявлять себя. В связи с этим до тех пор, пока исследователи не получили возможность реализовать алгоритмы работы мозга на вычислительных машинах, выявление и изучение алгоритмов оказывалось невозможным. Не было той среды, в которой можно было проверять эффективность алгоритмов. Алгоритмы функционировали в разных биологических системах, однако они были замаскированы частными проявлениями, частными свойствами Их нужно было выделить не только в «чистом», но и в «активном» виде, перевести на специальный субстрат, для того чтобы изучить и понять их свойства.
Специфику этой проблемы можно пояснить на примере, который, казалось бы, весьма далек от изучения механизмов работы мозга Речь идет о развитии микробиологии. После того как была создана концепция о том, что в основе ряда болезней лежит функционирование микроорганизмов, одной из самых актуальных задач оказалась задача выделения куль-