Главная » Просмотр файлов » Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект

Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект (960686), страница 7

Файл №960686 Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект (Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект) 7 страницаНапалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект (960686) страница 72017-12-26СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

МОЗГ ЧЕЛОВЕКА, МЫШЛЕНИЕ И

КИБЕРНЕТИКА

Применение кибернетики при изучении работы мозга сделало понятным, какие могучие «бастионы» предстояло взять при штурме новых вершин науки, как надежно Природа укрыла от человека свои тайны.

Человек и животное при помощи активных действий изменяют характер внешней среды. Оценивая результаты своих действий, они совершенствуют программы дальнейшего поведения. Если изолировать организм от внешнего мира или изучать системы простых воздействий, например в виде комплексов подаваемых в опыте сигналов, то работа мозга прекратится и исследователь будет иметь возможность изучать только субстрат, созданный для протекания процессов, но не сами процессы. Активная работа системы в этом случае ускользнет от взора экспериментатора. Возникает требование одновременного изучения процессов переработки информации, протекающих как в головном мозгу, так и во внешней среде. Это требование, как известно, было сформулировано еще И. М. Сеченовым, который указывал, что рассмотрение процессов во внешней среде должно быть включено в само определение понятия «живой организм».

Проблема не потеряла своего значения и в настоящее время. Исследования в области высшей нервной деятельности и нейрофизиологии до сих пор основаны на том, что в ходе эксперимента подаются отдельные сигналы или их простые сочетания, анализируется активность нервных клеток, выявляются правила, определяющие реакции на сигналы. Конечно, такая форма исследования вынужденна. Любое усложнение эксперимента приводит к таким противоречивым

43

результатам, которые не поддаются анализу.

При изучении работы мозга ученые встретились также с проблемой многообразия частных проявлений правил и алгоритмов работы мозга. Хорошо известно, что человек в каждой новой ситуации действует по-разному. Люди различного темперамента, опираясь на свой жизненный опыт, избирают специфические пути решения одних и тех же проблем. Трудно представить себе, что в основе этого многообразия лежат общие законы, в структуре которых оказывается предопределенной каждая операция. Непосредственный переход от описания различных форм поведения и обобщения полученных результатов к раскрытию лежащих в основе мышления закономерностей переработки информации не представляется возможным. Задачу раскрытия алгоритмов нужно было как-то решать.

Трудности возникают также в связи с целостностью изучаемых процессов. Здесь проявляются противоречия: пока не выявлены компоненты исследуемого явления, нельзя говорить о принципах целостной организации системы. Однако, если отсутствует общая схема, трудно осуществить не только определение значимости компонентов, но и организовать их планомерное выявление. Эти трудности могут быть преодолены только на основе построения и использования абстрактной теории.

Развитие кибернетики привело к возможности отыскания способов преодоления этих трудностей при изучении работы мозга. Один из путей решения был связан с разработкой методики выявления алгоритмов работы мозга.

ПУТИ ВЫЯВЛЕНИЯ АЛГОРИТМОВ ПРИ ИЗУЧЕНИИ РАБОТЫ МОЗГА

Как уже отмечалось, при выявлении алгоритмов работы мозга возникают трудности. Какова же их природа? Попытаемся ответить на этот вопрос на основе рассмотрения конкретных примеров. Выше мы привели рассмотрение работы алгоритма при игре в "побеждает чет», «поиск в лабиринте» и др.

44

Мы рассмотрели условия эксперимента, в котором один из игроков выучивал и использовал алгоритм игры, а другой — выполнял функцию экспериментатора, стремящегося выявить алгоритм.

Воспользуемся этой игрой для дальнейшего рассмотрения возможных путей выявления алгоритмов. Представим себя в качестве исследователя, который получает большое количество данных о конкретном поведении человека, знающего и использующего алгоритм при игре «побеждает чет». Каким образом можно перейти от этих данных к выявлению правил, например приведенного нами ранее правила «бери количество предметов на единицу больше кратного»? Мы можем еще раз убедиться в том, что путем непосредственного обобщения данных эксперимента и статистической их обработки это правило выявить не удается. Однако попытаемся решить другой вопрос. Если бы мы каким-либо способом в качестве гипотезы могли сформулировать правило, можно ли экспериментально проверить, использует ли его участник игры? На этот вопрос мы получим положительный ответ. Справедливость правила можно легко доказать путем постановки специального эксперимента. Для этого нужно, используя гипотезу о существовании правила, построить предсказание о том, сколько предметов (спичек) возьмет игрок, использующий алгоритм, на следующей стадии игры, и затем сопоставить прогноз с результатами опыта. Такой ответ не решает проблемы раскрытия алгоритма, но имеет немаловажное значение.

Теперь подумаем, как же построить гипотезу. Нужно иметь набор специальных понятий типа «кратное», «больше на единицу» и др. Рассматривая определенное количество данных о поведении игрока, имея эти или подобные им понятия, можно будет строить различные гипотезы и последовательно проверять их. При этом, конечно, объем работы будет достаточно большим.

Интересно отметить, что подобным путем знаменитый ученый XVII в. Кеплер открыл общие законы движения небесных тел. Эти законы каждый раз проявлялись в форме большого многообразия конкретных численных данных. Кеплер строил гипотезы о наличии законов и затем проверял их на

44

фактическом материале. Это не единственный путь перехода от эмпирического материала к раскрытию «порождающего» его более общего механизма, типа закона, алгоритма.

Нельзя ли сократить перебор вариантов гипотез при исследовании? Рассмотрим ряд чисел кратных двум (2, 4, 6, 8, 10, 12, 14) и шести (6, 12, 18, 24, 30). Очевидно, что общие свойства ряда сразу позволяют откинуть некоторые варианты гипотез.

Таким образом, создавая гипотезы и проверяя их экспериментально, можно выявить отдельные закономерности (правила). Для того чтобы объединить правила в структуру алгоритма и доказать их эффективность при решении задач, можно провести эксперименты специального типа. На основе гипотезы об организации алгоритма можно построить прогнозы целостного поведения игрока и сопоставить их с результатами опыта или последовательно осуществить все команды алгоритма самому и проверить, приводит ли он к выигрышу.

Итак, мы установили значение целого ряда предпосылок и этапов деятельности: 1) наличие набора абстрактных понятий, 2) возможность сокращения перебора при построении гипотез, 3) возможность экспериментальной проверки гипотез, 4) объединение отдельных правил в алгоритм, 5) проверка эффективности целостного алгоритма. Рассмотрим, как эти этапы деятельности могут быть реализованы при изучении работы мозга, как найти систему нужных абстрактных понятий, как сократить перебор гипотез, как осуществить проверку гипотез. При анализе примера игры в «побеждает чет» такие понятия имелись у человека ранее. При изучении работы мозга их, казалось бы, нужно было еще специально выработать. Однако внимательный анализ привел ученых к выводу о том, что существенные предпосылки для решения проблемы фактически уже созданы.

Мы уже говорили о более широком понимании роли учения И. П. Павлова, о тесной его связи с осуществлением начальных стадий построения абстрактной системы. Изучение работы мозга основывалось на рассмотрении абстрактных схем, отражающих взаимодействия организма и внешней среды. При этом был сформулирован ряд понятий: «условный

46

рефлекс», «рефлекс на комплексный раздражитель», «условный тормоз» и т. д.

Нельзя ли использовать эти понятия при решении проблемы построения гипотез как основы раскрытия алгоритмов и затем организовать эксперименты для их проверки? Этот вопрос стал основой проведения специального исследования. Была

осуществлена попытка описания отдельных компонентов алгоритмов на языке, созданном при разработке учения о высшей нервной деятельности. Для построения гипотезы осуществлялся анализ протоколов экспериментов. С целью сокращения числа возможных вариантов использовались схемы, положенные в основу экспериментов, пример которых представлен на рисунке.

Гипотеза о существовании правила должна была быть сформулирована в таком виде, который позволил бы выявить компонент работы алгоритма, применимого не только в различных ситуациях, определяемых схемой данного эксперимента, но и для различных случаев формирования поведения человека и животных в естественных условиях их жизди. Между тем результаты каждого конкретного эксперимента формулировались в виде последовательной записи возникающих в процессе опыта сигналов и действий испытуемых. Преодолеть это противоречие исследователи смогли при помощи разработанных

47

ими новых приемов анализа, связанных с постановкой и последовательным доказательством теоретических гипотез, сформулированных на основе языка схем опыта. Эти схемы предусматривали использование таких терминов, как «рефлекс на комплексный раздражитель» (см. рисунок — а1, a2, а3), отражающий отношение взаимного дополнения элементов, условный тормоз, отражающий отношение взаи-моисключаемости элементов, понятия типа «цепи», подкрепляющие сигналы «ориентирующего», «фиксирующего типа», и т. д. На этом обобщающем языке и формулировались правила работы мозга с тем, чтобы они могли стать основой построения алгоритмов.

Как известно, в области теории познания была осуществлена абстракция от конкретного рассмотрения ситуаций и установлены общие принципы организации окружающего нас мира, процесса взаимодействия человека со средой при познании им действительности. Большое значение имеет указание на то, что в основе окружающей действительности лежат сложные связи и системы отношений между объектами и что именно эти системы отношений являются наиболее важными для живых организмов. Перед учеными была поставлена задача воспроизвести в эксперименте не только простые причинно-следственные связи типа связи условного сигнала и безусловного подкрепления, но и более сложные системы отношений.

Советским исследователем в области высшей нервной деятельности членом-корреспондентом АН СССР Л. Г. Ворониным и его учениками были разработаны конкретные варианты методики. В этих экспериментах использовали специальные схемы. Пример такой схемы представлен на рисунке. При-проведении эксперимента исследователь мог включать сигнал только в том случае, если в результате каких-то поисковых действий человек или животное осуществляли предусмотренные схемой действия. Например, если были включены сигналы а1, а2, а3 (компоненты узла типа И) и испытуемый осуществлял действие б9 (нажатие на кнопку, на педаль и т. д.), то появлялся сигнал безусловного подкрепления (a15). Такая схема более полно отражала специфику внешних условий и создавала предпосылки для вы-

48

явления новых правил работы мозга. Экспериментатор реализовывал модель внешней среды, но сам не мог активно вмешиваться в ход эксперимента. Напротив, испытуемому принадлежала активная роль он осуществлял предусмотренные схемой действия, мог влиять на внешний мир, вызывая соответствующие изменения. В ходе опыта перед человеком или животным ставилась определенная цель: человек включал сигнал, который был определен инструкцией, а животное получало пищу.

Такие схемы позволили отразить различные условия, в которых осуществляется формирование поведения человека и животных. Нами был приведен только наиболее простой пример их построения.

Чтобы сформулировать гипотезу, применялась следующая методика. На первом этапе использовалась статистическая обработка данных экспериментов и выявлялись некоторые зависимости между сигналами и действиями, которые описывались на языке протокола опыта, например зависимость между появлением сигнала a13 и возникновением действия (нажим на кнопку б12). Такие закономерности слу-жили ориентиром для дальнейшего исследования. Выявлялось значение данного сигнала в схеме опыта. Устанавливалось, в частности, что этот сигнал (а13) является одним из компонентов «узла типа И» (а13, а18) (отношения взаимного дополнения), что-видно на схеме (см, рис.). Далее выяснялось, какое значение на схеме имеет 612 и т. д. Этот анализ давал возможность сделать предположение о наличии правила, например правила, определяющего, что элементы рефлекса на комплексный раздражитель могут играть роль автономного подкрепления при выработке новых систем рефлексов

Гипотеза о наличии правила проверялась экспериментально. При этом общая структура схемы опыта упрощалась. В нее включалось минимальное количество компонентов, необходимое для подтверждения созданной гипотезы. Например, в том случае, если предполагалось, что компоненты рефлекса на комплексный раздражитель могут служить подкрепляющим раздражителем для выработки новой цеп» рефлексов, при проведении эксперимента вырабатывался рефлекс на комплексный раздражитель, а за-

49

тем выяснялось, можно ли использовать элементы комплекса для выработки новых условнорефлекторных реакций.

После того как человек или животное осуществляли предписанные схемой опыта действия, включался элемент комплексного раздражителя. Выяснялось, фиксируется или не фиксируется данное действие в форме условного рефлекса. Если действие закреплялось, значит, гипотеза была правильной, если не закреплялось, то приходилось отказываться от этого предположения и переходить к построению новой гипотезы, которую также следовало проверить специальными экспериментами.

Б связи со спецификой описанных типов экспериментов первая их категория была определена как «ориентирующие эксперименты», а вторая — как «анализирующие эксперименты». Ориентирующие эксперименты служили для первоначального анализа процесса работы мозга и построения предположений, а анализирующие — для подтверждения созданных гипотез. Таким образом удалось реализовать ряд предпосылок, необходимых для выявления •отдельных правил.

Далее возникла задача объединения правил в структуру алгоритма. Для этой цели проводились так называемые «синтезирующие эксперименты», которые доказывали, что все правила, объединенные в •определенную последовательность, действительно приводили к решению задачи, т. е. что они обладали свойством результативности. Для этого проводились также «контролирующие» эксперименты, при постановке которых перед испытуемым не ставилась цель добиться поставленного в инструкции результата. Он механически выполнял все выявленные ранее правила, не вводя в эксперимент никакого элемента творческого поиска или мышления. Ставилась задача выяснить, может ли алгоритм (последовательность формально записанных правил) привести к желаемому результату, т. е. построить правильное «отображение внешнего мира». Если в результате действия испытуемого оказывалось возможным построить отображение, значит, алгоритм обладал определенной степенью полноты и эффективности. Если же возникали ошибки, то проводился их анализ, который

50

использовался для того, чтобы поставить новые эксперименты и выявить недостающие компоненты.

После того как был создан алгоритм, оказывалось возможным теоретически доказать, что его работа действительно приводит к реализации способностей человека и животных. Можно было поставить алгоритм на вычислительную машину и доказать эффективность полученных систем правил на основе использования метода кибернетического моделирования. Далее большое значение имел этап, на котором осуществлялось доказательство использования алгоритма на работе мозга в естественных условиях жизни человека и животных. Для этого по специальным тестам обнаруживалось присутствие данного алгоритма, а затем конкретное поведение человека интерпретировалось на языке описания алгоритма. На созданной теоретической модели можно было «проигрывать» разные ситуации и сравнивать полученные теоретически прогнозы с теми формами деятельности человека, которые проявлялись в естественных условиях. Таким образом, можно было доказывать эффективность алгоритма как основы работы мозга человека.

Следует отметить, что такая методика исследования объектов внешнего мира не является принципиально новой. Она широко используется в области физики и химии. Так, например, знание основных закономерностей превращения химических веществ становится основой развития биохимии, а системы закономерностей, описанные символически в виде специальных формул протекания химических реакций, — основой изучения биохимических систем живых организмов. При этом сначала выясняется наличие определенных веществ. Затем используются знания о целостных химических процессах и делается предположение о наличии тех или иных комплексных процессов в живых организмах. Эти предположения проверяются специальными экспериментами.

Характеристики

Тип файла
Документ
Размер
577,5 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее