Напалков А.В., Прагина Л.Л. - Мозг человека и искуссвенный интеллект (960686), страница 10
Текст из файла (страница 10)
Мы уже говорили о том, что при создании вычислительных машин были использованы более совершенные и гибкие принципы взаимодействия программ и реализующего их работу физико-химического субстрата. В этом случае одна и та же вычислительная машина могла обеспечивать работу различных программ и алгоритмов. Фактически ее организация не предопределяла работы самих программ, а только создавала условия для их реализации и функционирования. Возникала более сложная система отношений.
Различие между организацией двух описанных типов было проиллюстрированно нами на примере сравнения устройства арифмометра с вычислительной машиной. При использовании арифмометра алгоритмы воплощены непосредственно в форме физической организации прибора (в виде определенных шестеренок, которые позволяют механически осуществлять ариф-метическйе
65
операции). Этот принцип эффективен в определенных условиях.
Вычислительная машина построена на других принципах. Большое значение имеет организация программ, алгоритмов. Последние предопределяют характер конкретной деятельности системы, например способность вычислительной машины участвовать в игре в шахматы, осуществлять балансировку конвейерных линий, управлять производством и т. д. Субстрат информационной деятельности, ее физико-химическая система построены на основании решения специальных задач создания условий реализации и использования программ и алгоритмов, а не задач осуществления какого-либо конкретного поведения. Эти задачи предопределяют специальные функциональные схемы соотношения блоков. Например, процессор обеспечивает преобразование информационных структур. Монитор, супервайзер решают задачи управления работой программ. Включается специальное устройство «разделения времени», которое обеспечивает возможность одновременного обслуживания большого числа «пользователей». Функции всех этих блоков, как это видно из их наименования, не связаны не только с конкретным поведением или каким-либо иным внешним проявлением в работе системы (например, способностью к обучению, выработке условных рефлексов), но и с организацией отдельных алгоритмов.
Устройство мозга, по-видимому, непосредственно не соответствует ни одной из приведенных схем организации информационных систем. Однако трудности, которые возникают при его исследовании, заставляют думать о наличии достаточно сложной системы отношений между информационной и физико-химическими системами. При формировании мозга в процессе эволюции были использованы, видимо, принципы, которые предусматривают, что в осуществлении каждого поведенческого акта должны участвовать многие нервные центры. Наличие такого принципа было обнаружено в физиологических исследованиях.
Ученые предпринимали, например, многочисленные попытки расшифровки механизмов формирования двигательных актов на основе изучения простых движений типа почесывания, отряхивания. Они думали, что выбор таких элементарных движений облегчит
66
процесс исследования и позволит затем перейти к анализу более сложных явлений. Однако их надежды не оправдались. Задача раскрытия механизмов не была решена.
Дело в том, что в морфофизиологических системах мозга отсутствует непосредственное представительство как механизмов формирования отдельных простых двигательных актов, так и лежащих в их основе алгоритмов. В процессе эволюции была создана единая система, обеспечивающая формирование движений как целостного процесса, частными проявлениями которого являлись исследуемые движения типа почесывания, отряхивания и др. В этом заключаются трудности в исследовании работы нервной системы и причина неудачи в использовании тео'рии автоматов.
Для того чтобы расшифровать механизмы работы мозга, нужно знать не только алгоритмы его работы, но и пути их объединения в системы более сложного типа. Следовательно, методики изучения работы мозга, основанные 'на использовании теории автоматов, могут оказаться эффективными только в условиях организации комплексного исследования. При этом сначала должны быть раскрыты информационные задачи, составляющие основу интеллектуальной деятельности, алгоритмы их решения. Далее должны быть выявлены задачи, решаемые при работе физико-химических систем, выполняющих функции субстрата информационной деятельности, и, наконец, намечен переход к определению тех локальных частных подзадач, которые составляют основу информационной деятельности исследуемого отдела мозга. Только после этого может быть успешно применена теория автоматов.
Трудности, возникшие при использовании теории автоматов, привели к поискам других путей решения проблемы построения «искусственного интеллекта», к развитию нового направления кибернетики — «эвристического программирования».
ЭВРИСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ И ИССЛЕДОВАНИЕ ИНФОРМАЦИОННОЙ
ДЕЯТЕЛЬНОСТИ
Выявление алгоритмов работы мозга не решало всех проблем моделирования интеллектуальной деятельности. Открывались возможности для раскрытия механизмов таких явлений, как обучение, прогнозирование. Однако при попытках создать кибернетические системы, активно осуществляющие интеллектуальную деятельность, возникли трудности.
Жизнь человека, его деятельность определяются не только его опытом, системой знаний, но и формированием программ работы, обеспечивающих его приспособление к длительным сохраняющимся ситуациям. Например, студент, изучающий медицину, в процессе своей повседневной жизни работает в обстановке, специфической для данного института. Механизмы принятия решений, построения версий, формирования понятий используются, но они отходят на задний план, уступая место ситуационным программам деятельности, основанным на использовании выработанных понятий. Это один из основных уровней мыслительной деятельности, без изучения и моделирования которого было невозможно подойти к решению проблем «искусственного интеллекта».
В связи с этим большое значение в науке приобрели идеи специального направления кибернетики — эвристического программирования. Ученые не ставили перед собой цель воспроизвести модель организации нервных клеток, т. е. субстрата информационной деятельности, Для того чтобы создать модели искусственного интеллекта, оказалось достаточным построить определенные алгоритмы и программы. Такие программы затем можно было реализовать на универсальной вычислительной машине, не заботясь о том, чтобы устройство машины в какой-то степени приближалось к работе нервных элементов мозга. Созданные таким образом эвристические программы доказывали теоремы в области геометрии значительно быстрее, чем человек, и часто находили такой путь доказательства, который не приходил в голову специалистам.
68
Это позволило говорить о том, что они обладают какими-то элементами творчества или элементами интеллектуальной деятельности. Оказалось возможным построение таких эвристических программ, которые осуществляли деятельность банкового служащего, балансирование конвейерных линий, отвечали на простейшие вопросы и т д.
При создании эвристических программ исследователи отказались как от идеи использования математического аппарата, так и от разработки теории работы мозга. Они выявляли определенные «эвристики», т. е. способы принятия решений, в результате которых человек приходил к принятию решений в какой-либо узкой области своей профессиональной деятельности, например при балансировании конвейерных линий, при работе диспетчера и т. д. Определенные типичные ситуации и некоторые -способы, при помощи которых человек мог решать возникающие перед ним проблемы, представлялись в виде программ для вычислительных машин.
За относительно короткий период времени в различных странах было создано большое количество эвристических программ подобного типа, некоторые из них получили практическое значение. Так, например, были созданы программы, которые могли осуществлять такую сложную деятельность, как работа исследователя, устанавливающего структурную формулу химических веществ Для этого была проведена работа с опытным специалистом в области химии. Последовательно изучая все используемые им методики и эвристики, кибернетики добились создания нужных программ для вычислительных машин.
Характерная особенность этих исследований заключалась в том, что обычно создатели новых эвристических программ не заботились не только о сходстве организации субстрата информационной деятельности машины и мозга человека, но и о раскрытии природы самих эвристик, их происхождения, не искали объяснения, почему именно они способствуют решению задачи. Для исследователя этого направления казалось достаточным «подсмотреть» какую-либо эвристику при работе мозга и воспроизвести ее в виде программы вычислительной машины. Такой подход обеспечил быстрое создание программ, имитирующих
69
различные стороны интеллектуальной деятельности человека, но не мог полностью удовлетворить исследователей, так как не давал ответа на вопрос: почему именно эвристика приводит к положительному решению?
Часто в той ситуации, в которой человек осуществлял определенную эвристическую деятельность и Добивался результатов, с точки зрения математики отсутствовала какая-либо принципиальная возможность использования более рациональной тактики, чем тактика простого перебора всех возможных вариантов. Возникал естественный вопрос: как может использоваться эвристика в условиях, когда точное математическое описание и теоретическое рассмотрение приводят к выводу о невозможности существования каких-либо целесообразных способов действия?
Эти проблемы нашли свое отражение в целом ряде дискуссий, в ходе которых математики выражали свое несогласие с направлением работы специалистов в области эвристического программирования и указывали на то, что эвристики не могут обеспечивать эффективного принятия решений. Со своей стороны специалисты в области эвристического программирования приводили, казалось бы, также достаточно убедительный и простой довод, который сводился к тому, что если бы математики были правы и действительно не существовало принципиальной возможности рационального принятия решений в описываемых условиях, то не только созданные модели в области эвристического программирования, но и реальные механизмы мышления человека во внешней среде не могли бы существовать. В то же время факты говорят об обратном, об эффективности и большой продуктивности интеллекта человека.
Эвристическое программирование привлекает к себе серьезное внимание исследователей различных специальностей: психологов, философов, математиков. Оно развивалось в условиях необходимости преодоления серьезных противоречий и трудностей. Некоторым проблемам эвристического программирования были посвящены специальные заседания международной конференции, созванной в Суханово (Московская обл.}. На эту конференцию собрались исследователи из многих стран мира, для того чтобы обсудить
70
перс-пективы создания искусственного интеллекта. На ней выступил, в частности, американский исследователь Гелернтер. Свою критику методов эвристического программирования профессор Гелернтер построил в форме ответа на вопросы. Отвечая на вопрос, почему он прекратил свои исследования в области создания эвристических программ, доказывающих теоремы в области геометрии, он указывал, что используемые в таких программах принципы и механизмы не отражают основных процессов творческого мышления человека. Они работают только в очень узких специализированных ситуациях и поэтому не могут служить основой для изучения психологии и физиологии мышления.
Недостатки эвристического программирования проявились также при попытках использования программ для решения практических задач. В некоторых случаях такие программы оказывались полезными. Однако в то же время выявились и существенные их недостатки. Дело в том, что, создавая кибернетические устройства, способные осуществлять проектирование, конструирование, решение задач управления производством, исследователи ставили перед собой цель построить системы, превосходящие способности мозга человека, системы, которые бы могли использовать новые, более эффективные алгоритмы. Между тем в том случае, если в виде программы были реализованы эвристики, используемые специалистами, создавалось впечатление, что программа повторяет только то, что делал раньше человек, и не может создать более рациональной системы принятия решения. Это существенным образом ограничивало возможности практического использования моделей искусственного интеллекта в этих областях производственной деятельности.
Эксперименты показали, что описываемые методы моделирования нельзя применять, при изучении механизмов работы мозга. Если используются понятия человеческого языка, например понятие, связанное с проектированием жилых зданий или проектированием автоматизированных систем управления, то каждое из этих понятий относится к некоторой области конкретной производственной деятельности человека, оно предопределяет круг решаемых проблем. Применение
71
хотя бы одного такого понятия неизбежно влечет за
собой использование других конкретных понятий, так как все они связаны в мышлении человека в единую систему. Создатель искусственного интеллекта, которому кажется, что он может использовать только одно «базовое» понятие, а все остальные возникнут в процессе работы системы и будут общими для различных задач, «попадает в ловушку». В конце концов исследование приводит к созданию нового варианта частной программы.