Главная » Просмотр файлов » ответы на билеты

ответы на билеты (928633), страница 15

Файл №928633 ответы на билеты (Шпоры) 15 страницаответы на билеты (928633) страница 152013-08-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 15)

1.4, а). Векторная величина(1.5) называется полным напряжением в точке К. Проекция вектора R    P полного напряжения P на нормаль к данной площадке обозначается через lim F 0 F нормальным напряжением . и называетсяПроекции вектора P на перпендикулярные оси вплоскостиплощадки(рис. 1.4, б)называютсяк а с а т е л ь н ы м и н а п р я ж е н и я м и по направлениюсоответствующих осей и обозначаются ´ и ´´. Если черезту же самую точку К провести другую площадку, то, вобщем случае будем иметь другое полное напряжение.Совокупность напр-й для множества площадок, проходящих через данную точку, образуетнапряженное состояние в этой точке.Совокупность напряжений, возникающих во всех секущих плоскостях, проходящих через этуточку наз.

напряжѐнным состоянием.Билет 271) Косой изгиб. Определение напряженийКОСОЙ ИЗГИБКосым изгибом называется такой вид изгиба, при котором плоскость нагрузки (силовая линия)изгибающего момента не совпадает ни с одной из главных осей инерции поперечного сечения стержняX, Y (рис. 7.1, а, б).При косом изгибе действующие внешние силы (моменты) представляют их проекциями на главные осипоперечного сечения (рис. 7.1, б), тем самым сводят задачу к случаю поперечного изгиба в двухглавных плоскостях. Из рис. 7.1, а, б видно, что:Изгибающие моменты в расчетном сечении:При выбранном направлении главных центральных осей инерции положительным октантом будетпервый октант (на рис.

7.1, а, б заштрихован).Рис. 7.1Правило знаков. Изгибающие моменты в расчетном поперечном сечении считаются положительными,если они вызывают в первом (заштрихованном) октанте напряжения растяжения.Нормальные напряжения в точках поперечного сечения с текущими координатами х, у определяютсяалгебраической суммой напряжений, вызываемых изгибающими моментами Мx и Мy:где Jx и Jy — моменты инерции поперечного сечения относительно главных, центральных осей инерциисечения X, Y, т. е.

изменяются по линейному закону. Уравнение нейтральной (нулевой) линии всечении найдем, приравнявОтветы совпали.При х = 0 значение у = 0, т. е. прямая с угловым коэффициентом k проходит через центр тяжестипоперечного сечения.При косом изгибе нейтральная линия представляет собой прямую, которая не перпендикулярна кплоскости изгибающего момента , или, что одно и то же, к силовой линии.Силовая линия наклонена к оси X под углом а, следовательно, ее угловой коэффициент равен:Угловой коэффициент нейтральной линии:Так как в общем случае Jx не равно Jy, то и k1 не равно — 1/k, следовательно, нулевая длина неперпендикулярна силовой линии, а повернута в сторону главной оси минимального момента инерции.Нейтральная линия разделяет поперечное сечение на две зоны: в которой действуют только напряжения растяжения; в которой действуют только напряжения сжатия.

Первый (заштрихованный) квадрант (рис 7.1,а) находится всегда в зоне действия напряжений растяжения. Максимальные по величиненормальные напряжения находятся в точках поперечного сечения максимально удаленных отнейтральной оси.Максимальные по величине напряжения растяжения возникают в точке А с координатами X a, Yл, амаксимальные напряжения сжатия возникают в точке В с координатами XВ, YВ (рис.

7.1, в):Получим эпюру нормальных напряжений в расчетном сечении (7.1, в).Условие прочности. Если материал стержня одинаково работает на растяжение и на сжатие, то условиепрочности записывается в виде:Если материал стержня работает на растяжение и на сжатие не одинаково, то расчет проводитсяраздельно, т. е. проверяются условия прочности:Для поперечных сечений, имеющих две оси симметрии:где Wx, Wy — момент сопротивления поперечного сечения относительно главных, центральных осейинерции X, Y.Прогибы при косом изгибе.

Прогиб конца консоли от действия Рx направлен по оси X и равен:Прогиб от действия Рy направлен по оси Y и равен:Модуль полного прогиба конца консолиУгол наклона вектора f к оси Xт. е. угловой коэффициентперемножив k на k2 получим:что свидетельствует о том, что нулевая линия и направление полного прогиба взаимно2)Чистый сдвиг. Главные напряжения. Закон Гука.Чистый сдвиг1=45о3=Чистый сдвиг — напряженное состояние, прикотором по взаимно перпендикулярным площадкам(граням) элемента возникают только касательныенапряжения.

Касательные напряжения  Q, где QF— сила, действующая вдоль грани, F — площадьграни. Площадки, по которым действуют толькокасательные напряжения, называются площадками чистого сдвига. Касательные напряжения на них —наибольшие. Чистый сдвиг можно представить как одновременное сжатие и растяжение, происходящеепо двум взаимно перпендикулярным направлениям. Т.е. это частный случай плоского напряженногосостояния, при котором главные напряжения: 1= — 3 = ; 2= 0. Главные площадки составляют сплощадками чистого сдвига угол 45о.При деформации элемента, ограниченного площадками чистого сдвига,квадрат превращается в ромб.  — абсолютный сдвиг,а— относительный сдвиг или угол сдвига.aЗакон Гука при сдвиге:  = /G или  = G .G — модуль сдвига или модуль упругости второго рода [МПа] — постоянная материала,характеризующая способность сопротивляться деформациям при сдвиге.

G упругости, — коэффициент Пуассона).E(Е — модуль2(1  ).

Характеристики

Тип файла
PDF-файл
Размер
2,67 Mb
Материал
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее